Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T16:31:02.473Z Has data issue: false hasContentIssue false

Extensive dickitization of the permo-triassic fluvial sandstones from the eastern Iberian Range, Spain

Published online by Cambridge University Press:  01 January 2024

J. D. Martín-Martín*
Affiliation:
Department of Earth Sciences, Uppsala University, SE-75236 Uppsala, Sweden
D. Gómez-Gras
Affiliation:
Unitat de Petrologia i Geoquímica, Facultat de Ciències, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain
T. Sanfeliu
Affiliation:
Departament de Ciéncies Experimentals, Universitat Jaume I, 12080 Castelló, Spain
M. Thiry
Affiliation:
Centre de Géociences, É cole des Mines de Paris, 77305 Fontainebleau Cedex, France
M. D. Ruiz-Cruz
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga, Spain
F. Franco
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Diagenetic kaolin minerals are very common in the Permo-Triassic succession from the SE Iberian Range, Spain. The morphology and crystal structure of kaolin minerals has been examined in four size fractions (<1 µm, <2 µm, <6.3 µm and <20 µm) of sandstone samples by means of scanning electron microscopy, X-ray diffraction, infrared spectroscopy, differential thermal analysis and thermogravimetry. Experimental data reveal that dickite is the dominant kaolin-type mineral in the entire range of size fractions, whereas small amounts of kaolinite coexists with dickite in all size fractions. Dickite appears typically as booklets of pseudo-hexagonal plates with blocky habit. The increase in size fraction is concomitant with the increase in the amount of dickite and the progressive improvement of its structural order. The extensive dickitization is attributed to the high paleogeothermal gradient recorded in the studied area and the increase in H+, presumably resulting from the flux of organic acids derived from the underlying Carboniferous rocks and/or the late Permian succession. These conditions are more likely to be associated with the late Cretaceous post-rift thermal stage of the eastern Iberian Basin. Lately, during the maximum burial depth, the fine crystalline kaolin minerals were slightly illitized. Given the very small feldspar content in the studied sequence, the results reflect the important contribution of mica alteration to the early diagenetic formation of kaolinite as well as the late conversion to dickite.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Arche, A. and López-Gómez, J.L., (1992) Una nueva hipótesis sobre las primeras etapas de la evolución tectosedimentaria de la cuenca pérmico-triásica del SE de la Cordillera Ibérica Cuadernos de Geología Ibérica 16 115143.Google Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., (1980) Structures of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 249303.Google Scholar
Beaufort, D. Cassagnabere, A. Petit, S. Lanson, B. Berger, G. Lacharpagne, J.C. and Johansen, H., (1998) Kaolinite-to-dickite reaction in sandstone reservoirs Clay Minerals 33 297316 10.1180/000985598545499.CrossRefGoogle Scholar
Berger, G. Lacharpagne, J.C. Velde, B. Beaufort, D. Cassagnabere, S. and Lanson, B., (1997) Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences Applied Geochemistry 12 2335 10.1016/S0883-2927(96)00051-0.CrossRefGoogle Scholar
Bjørlykke, K. Brendsdal, A. and Gautier, D.L., (1986) Diagenesis of the Brent sandstone in the Statfiord Field, North Sea Roles of Organic Matter in Sediment Diagenesis USA SEPM 157167 10.2110/pec.86.38.0157.CrossRefGoogle Scholar
Brindley, G.W. and Porter, A.R., (1978) Occurrence of dickite in Jamaica — ordered and disordered varieties American Mineralogist 63 554562.Google Scholar
Caballero, M.A. and Martín-Vivaldi, J.L., (1975) Estudio mineralóigico y genético de la fracción fina del trías español Madrid Servicio de Publicaciones Ministerio de Industria 277 pp.Google Scholar
De Ros, L.F., (1998) Heterogeneous generation and evolution of diagenetic quartz-arenites in Silurian-Devonian Furnas Formation of the Paraná Basin, southern Brazil Sedimentary Geology 116 99128 10.1016/S0037-0738(97)00081-X.CrossRefGoogle Scholar
Drits, V. Tchoubar, C., Drits, V. and Tchoubar, C., (1990) The modelization method in the determination of the structural characteristics of some layer silicates: Internal structure of the layers, nature and distribution of the stacking faults X-ray Diffraction by Disordered Lamellar Structures Berlin Springer-Verlag 233303 10.1007/978-3-642-74802-8_8.CrossRefGoogle Scholar
Ehrenberg, S.N. Aagaard, P. Wilson, M.J. Fraser, A.R. and Duthie, D.M.L., (1993) Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf Clay Minerals 28 325352 10.1180/claymin.1993.028.3.01.CrossRefGoogle Scholar
Gómez-Gras, D., (1993) El Permotrías de la Cordillera Costero Catalana: Facies y Petrología Sedimentaria (Parte I) Boletín Geológico y Minero 104 115161.Google Scholar
Gómez-Gras, D., (1993) El Permotrías de las Baleares y de la vertiente mediterránea de la Cordillera Ibérica y del Maestrat: Facies y Petrología Sedimentaria (Parte II) Boletín Geológico y Minero 104 467515.Google Scholar
Guimerà, J. and Álvaro, M., (1990) Structure et évolution de la compression alpine dans la Chaîne ibérique et la Chaîne côtiere catalane (Espagne) Bulletin de la Societé Géologique de France VI 339348 10.2113/gssgfbull.VI.2.339.CrossRefGoogle Scholar
Jourdan, A., Thomas, M., Brevart, O., Robson, P., Sommer, F. and Sullivan, M. (1987) Diagenesis as the control of the Brent sandstones reservoir properties in the Greater Alwyn area (East Shetland Basin). Pp. 951961 in: Petroleum Geology of North West Europe (Brooks, J. and Glennie, K., editors). Proceedings of the 3rd Conference on Petroleum Geology of North West Europe.Google Scholar
Lanson, B. Beaufort, D. Berger, G. Baradat, J. and Lacharpagne, J.C., (1996) Illitization of diagenetic kaolinite-to-dickite conversion series: late-stage diagenesis of the lower Permian Rotliegend sandstones reservoir, offshore of the Netherlands Journal of Sedimentary Research 66 501518.Google Scholar
Lanson, B. Beaufort, D. Berger, G. Bauer, A. Cassagnabère, A. and Meunier, A., (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review Clay Minerals 37 122 10.1180/0009855023710014.CrossRefGoogle Scholar
López-Gómez, J.L. and Arche, A., (1992) Paleogeographical significance of the Röt (Anisian, Triassic) Facies (Marine clays, muds and marls Fm.) in the Iberian Ranges, eastern Spain Palaeogeography, Palaeoclimatology, Palaeoecology 91 347361 10.1016/0031-0182(92)90076-H.CrossRefGoogle Scholar
Mackenzie, R.C. and Mackenzie, R.C., (1970) Simple phyllosilicates based on gibbsite- and brucite-like sheets Differential Thermal Analysis New York Academic Press 497537.Google Scholar
Martín-Martín, J.D., (2004) Los minerales de la arcilla del Permo-Triásico de la Cordillera Ibárica oriental: Procedencia y evolucion diagenética Spain Universidad Jaume I, Castelló 189 pp.Google Scholar
Martín-Martín, J.D. Gómez-Gras, D. Sanfeliu, T. Permanyer, A. Nuñez, J.A. and Parcerisa, D., (2006) Conditions of kaolin illitization in the Permo-Triassic sandstones and conglomerates from the SE Iberian Ranges, Spain Journal of Geochemical Exploration 89 263266 10.1016/j.gexplo.2005.11.061.CrossRefGoogle Scholar
McAulay, G.E. Burley, S.D. Fallick, A.E. and Kusznir, N.J., (1994) Palaeohydrodynamic fluid flow regimes during diagenesis in the Brent Group in the Hutton-NW Hutton reservoirs: constraints from oxygen isotope studies of authigenic kaolin and reverse flexural modeling Clay Minerals 29 609626 10.1180/claymin.1994.029.4.16.CrossRefGoogle Scholar
Morad, S. Ben Ismail, H.N. De Ros, L.F. Al-Aasm, I.S. and Serrhini, N.-E., (1994) Diagenesis and formation water chemistry of Triassic reservoir sandstones from southern Tunisia Sedimentology 41 12531272 10.1111/j.1365-3091.1994.tb01452.x.CrossRefGoogle Scholar
Paterson, E. Swaffield, R. and Wilson, M.J., (1987) Thermal Analysis A Handbook of Determinative Methods in Clay Mineralogy Glasgow, UK Blackie 97132.Google Scholar
Platt, J.D., (1993) Controls on clay mineral distribution and chemistry in the early Permian Rotliegend of Germany Clay Minerals 28 393416 10.1180/claymin.1993.028.3.05.CrossRefGoogle Scholar
Roca, E. and Guimerà, J., (1992) The neogene structure of the eastern Iberian margin: structural constraints on the crustal evolution of the Valencia trough (Western Mediterranean) Tectonophysics 203 203218 10.1016/0040-1951(92)90224-T.CrossRefGoogle Scholar
Roca, E. Guimerà, J. and Salas, R., (1994) Mesozoic extensional tectonics in the southeast Iberian Chain Geological Magazine 131 155168 10.1017/S0016756800010694.CrossRefGoogle Scholar
Ruiz-Cruz, M.D. and Andreo, B., (1996) Genesis and transformation of dickite in Permo-Triassic sediments (Betic Cordilleras, Spain) Clay Minerals 31 133152 10.1180/claymin.1996.031.2.01.CrossRefGoogle Scholar
Ruiz-Cruz, M.D. and Moreno-Real, L., (1993) Diagenetic kaolinite/dickite (Betic Cordilleras, Spain) Clays and Clay Minerals 41 570579 10.1346/CCMN.1993.0410507.CrossRefGoogle Scholar
Russell, J.D. and Wilson, M.J., (1987) Infrared methods A Handbook of Determinative Methods in Clay Mineralogy Glasgow, UK Blackie 133173.Google Scholar
Salas, R. and Casas, A., (1993) Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian Basin Tectonophysics 228 3355 10.1016/0040-1951(93)90213-4.CrossRefGoogle Scholar
Salas, R. Guimerà, J. Mas, R. Martín-Closas, C. Melendez, A. Alonso, A., Ziegler, P.A. Cavazza, W. Robertson, A.H.F. and Crasquin-Soleau, S., (2001) Evolution of the Mesozoic Central Iberian Rift System and its Cainozoic inversion (Iberian Chain) Pery-Tethyan Rift/Wrench Basins and Passive Margins Paris Mémoires du Muséum National d’Histoire Naturelle (186) 145185.Google Scholar
Salas, R. Caja, M.A. Martín, J.D. Mas, R. and Permanyer, A., (2005) Mid-Late Cretaceous volcanism, metamorphism and the regional thermal event affecting the Northeastern Iberian basins (Spain) Global Events during the Quiet Aptian-Turonian Superchron Grenoble, France Série Spéciale “Colloques et excursions” 5558.Google Scholar
Sommer, F., (1975) Histoire diagénétique d’une série gréseuse de Mer du Nord. Datation de l’introduction des hydrocarbures Revue de l’Institut Francais du Petrole 30 729741.Google Scholar
Sos, V. (1975) Los terrenos del Periodo Carbonífero de la provincia de Castellón. Boletín de la Real Sociedad Española de Historia Natural, Volumen Extraordinario 1er Centenario de la Fundación de la Real Sociedad Española de Historia Natural, Trabajos Científicos en Geología, 419435.Google Scholar
Van Keer, I. Muchez, P.h. and Viaene, W., (1998) Clay mineralogical variations and evolutions in sandstone sequences near a coal seam and shales in the Westphalian of the Campine Basin (NE Belgium) Clay Minerals 33 159169 10.1180/000985598545345.CrossRefGoogle Scholar
Worden, R.H. Morad, S., Worden, R.H. and Morad, S., (2002) Clay minerals in sandstones: controls on formation, distribution and evolution Clay Mineral Cements in Sandstones Oxford, UK Blackwell Publishing 341.Google Scholar