Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T06:18:20.076Z Has data issue: false hasContentIssue false

Expandable Phyllosilicate Reactions with Lithium on Heating

Published online by Cambridge University Press:  02 April 2024

C. H. Lim
Affiliation:
Department of Soil Science, University of Wisconsin, Madison, Wisconsin 53706
M. L. Jackson
Affiliation:
Department of Soil Science, University of Wisconsin, Madison, Wisconsin 53706
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A method using Li saturation and heating to 250°C to differentiate montmorillonite from beidellite and nontronite has been developed. The test utilizes three washings with 3 M LiCl and two washings with 0.01 M LiCl in 90% methanol to prevent dispersion. An 'infinitely thick’ sample (6–8 mg/cm2) on a glass slide is used to avoid the effects of the reaction of a thin clay film with sodium of the slide when it is heated at 250°C. Solvation with glycerol rather than ethylene glycol is used, because all of the Li smectites studied expanded to some extent in ethylene glycol after the heating. The smectites included several montmorillonites, a nontronite, and saponites. The presence of interstratified montmorillonite and beidellite layers was clearly shown by the test for several smectite samples, including the so-called beidellites from Beidell, Colorado, and Chen-yuan, Taiwan, and several soil clays. The test thereby provides more mineralogical information than the often-used arbitrary dividing point between montmorillonite and beidellite at 50% tetrahedral charge. Heating the Li-saturated clays at 250°C caused substitution of 35 to 125 meq/100 g of nonexchangeable Li. These amounts exceeded the changes in cation-exchange capacity plus Li by 4 to 21 meq/100 g, except for the end-member beidellite from the Black Jack mine, Idaho. Fusion with LiNO3 at 300°C could not be used to differentiate between smectites instead of washing with LiCl solution and heating to 250°C, because fused montmorillonite subsequently expanded to 18 Å with glycerol. Large increases in nonexchangeable Li were caused by the fusion of smectites, a vermiculite, and two partially expanded micas.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

References

Abdel-Kader, F. H., Jackson, M. L. and Lee, G. B., 1978 Soil kaolinite, vermiculite, and chlorite identification by an improved lithium DMSO X-ray diffraction test Soil Sci. Soc. Amer. J. 42 163167.CrossRefGoogle Scholar
Alexiades, C. A. and Jackson, M. L., 1965 Quantitative determination of vermiculite in soils Soil Sci. Soc. Amer. Proc. 29 522527.CrossRefGoogle Scholar
Anderson, D. M. and Reynolds, R. C., 1966 Umiat bentonite: an unusual montmorillonite from Umiat, Alaska Amer. Mineral. 51 14431456.Google Scholar
Bailey, S. W., 1980 Summary of recommendations of AIPEA nomenclature committee on clay minerals Amer. Mineral. 65 17.Google Scholar
Barshad, I., 1954 Cation exchange in micaceous minerals: II. Replaceability of ammonium and potassium from vermiculite, biotite, and montmorillonite Soil Sci. 78 5776.CrossRefGoogle Scholar
Brindley, G. W. and Ertem, G., 1971 Preparation and solvation properties of some variable charge montmorillonites Clays & Clay Minerals 19 399404.CrossRefGoogle Scholar
Brown, G., 1961 The X-ray Identification and Crystal Structures of Clay Minerals London Mineralogical Society.Google Scholar
Bystrom-Brusewitz, A. M. and Bailey, S. W., 1976 Studies on the Li test to distinguish between beidellite and montmorillonite Proc. Int. Clay Conf., Mexico City, 1975 Illinois Applied Publishing, Wilmette 419428.Google Scholar
Calvet, R. and Prost, R., 1971 Cation migration into empty octahedral sites and surface properties of clays Clays & Clay Minerals 19 175186.CrossRefGoogle Scholar
Chen, P. Y., Wan, H. M. and Brindley, G. W., 1976 Beidellite clay from Chang-yuan, Taiwan; geology and mineralogy Clay Miner. 11 221233.CrossRefGoogle Scholar
Douglas, L. A., van Olphen, H. and Veniale, F., 1982 Smectites in acidic soils Proc. Int. Clay Conf., Bologna, Pavia, 1981 Amsterdam Elsevier 635640.Google Scholar
Ertem, G., 1972 Irreversible collapse of montmorillonite Clays & Clay Minerals 20 199205.CrossRefGoogle Scholar
Farmer, V. C. and Russell, J. D., 1967 Infrared absorption spectrometry in clay studies Clays & Clay Minerals 15 121142.CrossRefGoogle Scholar
Glaeser, R., Mantin, I. and Mering, J., 1967 Observations sur la beidellite Bull. Groupe Franc. Argiles 19 125130.CrossRefGoogle Scholar
Gonzalez Garcia, F., 1950 Contribution al estudio de las propiedades de los silicatos del groupo de la montmorillonita An. Edafol. Fisiol. Veg. 9 149185.Google Scholar
Greene-Kelly, R., 1952 A test for montmorillonite Nature 170 11301131.CrossRefGoogle Scholar
Greene-Kelly, R., 1953 The identification of montmorillonoids in clays J. Soil Sci. 4 233237.CrossRefGoogle Scholar
Greene-Kelly, R., 1955 Dehydration of the montmorillonite minerals Mineral. Mag. 30 604615.Google Scholar
Hamilton, J. D., 1971 Beidellitic montmorillonite from Swansea, New South Wales Clay Miner. 9 107123.CrossRefGoogle Scholar
Heller-Kallai, L. and Bailey, S. W., 1976 Interaction of montmorillonite with alkali halides Proc. Int. Clay Conf, Mexico City, 1975 Wilmette, Illinois Applied Publishing 361372.Google Scholar
Heller-Kallai, L. and Rozenson, I., 1980 Dehydroxylation of dioctahedral phyllosilicates Clays & Clay Minerals 28 355368.CrossRefGoogle Scholar
Hofmann, U. and Kiemen, R., 1950 Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung Z. Anorg. Chem. 262 9599.CrossRefGoogle Scholar
Jackson, M. L., 1979 Soil Chemical Analysis—Advanced Course 2nd Wisconsin 11th printing, published by author, Madison.Google Scholar
Jackson, M. L. and Sridhar, K., 1974 Scanning electron microscopic and X-ray diffraction study of natural weathering of phlogopite through vermiculite to saponite Soil Sci. Soc. Amer. Proc. 38 843847.CrossRefGoogle Scholar
Johns, W. D. and Tettenhorst, R. T., 1959 Differences in the montmorillonite solvating ability of polar liquids Amer. Mineral. 44 894896.Google Scholar
Lagaly, G., Weiss, A. and Bailey, S. W., 1976 The layer charge of smectitic layer silicates Proc. Int. Clay Conf, Mexico City, 1975 Wilmette, Illinois Applied Publishing 157172.Google Scholar
Larsen, E. S. and Wherry, E. T., 1925 Beidellite, a new mineral name J. Wash. Acad. Sci. 15 465466.Google Scholar
Lim, C. H. and Jackson, M. L., 1984 Mineralogy of soils developed in periglacial deposits of southwestern Canada Soil Sci. Soc. Amer. J. 48 684692.CrossRefGoogle Scholar
Marshall, C. E., Humbert, R. P., Shaw, B. T. and Caldwell, O. G., 1942 Studies of clay particles with the electron microscope: II. The fractionation of beidellite, nontronite, magnesium bentonite, and attapulgite Soil Sci. 54 149158.CrossRefGoogle Scholar
Ross, G. J. and Mortland, M. M., 1966 A soil beidellite Soil. Sci. Soc. Amer. Proc. 30 337343.CrossRefGoogle Scholar
Tettenhorst, R. T., 1962 Cation migration in montmorillonites Amer. Mineral. 47 769773.Google Scholar
Tettenhorst, R. T., Johns, W. D., Bradley, W. F. and Bailey, S. W., 1966 Interstratification in montmorillonite Clays and Clay Minerals, Proc. 13th Natl. Conf, Madison, Wisconsin, 1964 New York Pergamon Press 8593.Google Scholar
Weaver, C. E., 1958 The effects of geologic significance of potasium ‘fixation’ by expandable clay minerals derived from muscovite, biotite, chlorite, and volcanic material Amer. Mineral. 43 839861.Google Scholar
Weaver, R. M., Jackson, M. L. and Syers, J. K., 1976 Clay mineral stability as related to activities of aluminum, silicon, and magnesium in matrix solution of montmorillonitecontaining soils Clays and Clay Minerals 24 246252.CrossRefGoogle Scholar
Weir, A. H. and Greene-Kelly, R., 1962 Beidellite Amer. Mineral. 47 137146.Google Scholar
White, J. L., 1956 Reactions of molten salts with layerlattice silicates Clays and Clay Minerals, Proc. 4th Natl. Conf., University Park, Pennsylvania, 1955 456 133146.Google Scholar
Wildman, W. E., Jackson, M. L. and Whittig, L. D., 1968 Iron-rich montmorillonite formation in soils derived from serpentinite Soil Sci. Soc. Amer. Proc. 32 787794.CrossRefGoogle Scholar