Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T11:58:18.073Z Has data issue: false hasContentIssue false

Enhancement of dissolution rates of amorphous silica by interaction with amino acids in solution at pH 4

Published online by Cambridge University Press:  01 January 2024

Motoharu Kawano*
Affiliation:
Department of Earth and Environmental Sciences, Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
Tamao Hatta
Affiliation:
Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
Jinyeon Hwang
Affiliation:
Division of Earth Environmental System, Pusan National University, Busan 609-735, Korea
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Amino acids are present in various geochemical environments and they interact with mineral surfaces. To evaluate the effects of amino acids on mineral dissolution at pH conditions less than their isoelectric points (pI), dissolution experiments of X-ray amorphous silica in solutions containing 10.0 mmol/L of various amino acids (cysteine, asparagine, serine, tryptophan, alanine, threonine, histidine, lysine, and arginine) at pH 4 were performed. The results confirmed that basic amino acids (histidine, lysine, and arginine) produce an 8- to 8.5-fold enhancement of the rate of dissolution of amorphous silica compared with an amino acid-free control. Neutral amino acids (cysteine, asparagine, serine, tryptophan, alanine, and threonine) enhanced rates of dissolution by a factor of ∼3 to 3.5. The rate-enhancement effects of amino acids are controlled by concentrations of the amino acid’s cationic species which interact with the negatively charged >SiO sites at the surface of the amorphous silica.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Amelung, W. Zhang, X. and Flach, K.W., 2006 Amino acids in grassland soils: Climatic effects on concentrations and chirality Geoderma 130 207217 10.1016/j.geoderma.2005.01.017.CrossRefGoogle Scholar
Andersson, E. Simoneit, B.R.T. and Holm, N.G., 2000 Amino acid abundances and stereochemistry in hydrothermally altered sediments from the Juan de Fuca Ridge, northeastern Pacific Ocean Applied Geochemistry 15 11691190 10.1016/S0883-2927(99)00110-9.CrossRefGoogle Scholar
Apruzzese, F. Bottari, E. and Festa, M.R., 2002 Protonation equilibria and solubility of l-cystine Talanta 56 459469 10.1016/S0039-9140(01)00570-7.CrossRefGoogle ScholarPubMed
Barker, W.W. Welch, S.A. Banfield, J.F., Banfield, J.F. and Nealson, K.H., 1997 Biogeochemical weathering of silicate minerals Geomicrobiology: Interactions between Microbes and Minerals Washington D.C. Mineralogical Society of America 391428 10.1515/9781501509247-014.CrossRefGoogle Scholar
Bennett, P.C., 1991 Quartz dissolution in organic-rich aqueous systems Geochimica et Cosmochimica Acta 55 17811797 10.1016/0016-7037(91)90023-X.CrossRefGoogle Scholar
Bennett, P.C. Melcer, M.E. Siegel, D.I. and Hassett, J.P., 1988 The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C Geochimica et Cosmochimica Acta 52 15211530 10.1016/0016-7037(88)90222-0.CrossRefGoogle Scholar
Blake, R.E. and Walter, L.M., 1999 Kinetics of feldspar and quartz dissolution at 70–80°C and near-neutral pH: Effects of organic acids and NaCl Geochimica et Cosmochimica Acta 63 20432059 10.1016/S0016-7037(99)00072-1.CrossRefGoogle Scholar
Brady, P.V. and Walther, J.V., 1990 Kinetics of quartz dissolution at low temperatures Chemical Geology 82 253264 10.1016/0009-2541(90)90084-K.CrossRefGoogle Scholar
Burdige, D.J. and Martens, C.S., 1988 Biogeochemical cycling in an organic-rich coastal marine basin: 10. The role of amino acids in sedimentary carbon and nitrogen cycling Geochimica et Cosmochimica Acta 52 15711584 10.1016/0016-7037(88)90226-8.CrossRefGoogle Scholar
Burdige, D.J. and Martens, C.S., 1990 Biogeochemical cycling in an organic-rich coastal marine basin: 11. The sedimentary cycling of dissolved, free amino acids Geochimica et Cosmochimica Acta 54 30333052 10.1016/0016-7037(90)90120-A.CrossRefGoogle Scholar
Chen, J. Li, Y. Yin, K. and Jin, H., 2004 Amino acids in the Pearl River Estuary and adjacent waters: origins, transformation and degradation Continental Shelf Research 24 18771894 10.1016/j.csr.2004.06.013.CrossRefGoogle Scholar
Dallavalle, F. Folesani, G. Sabatini, A. Tegoni, M. and Vacca, A., 2001 Formation equilibria of ternary complexes of copper(II) with (S)-tryptophanhydroxamic acid and both D- and L-amino acids in aqueous solution Polyhedron 18 103109 10.1016/S0277-5387(00)00597-0.CrossRefGoogle Scholar
Dawson, R.C. Elliott, D.C. Elliott, W.H. and Jones, K.M., 1986 Data for Biochemical Research third Oxford, UK Clarendon Press 580 pp.Google Scholar
Dayde, S. Champmartin, D. Rubini, P. and Berthon, G., 2002 Aluminium speciation studies in biological fluids. Part 8. A quantitative investigation of Al(III)-amino acid complex equilibria and assessment of their potential implications for aluminium metabolism and toxicity Inorganica Chimica Acta 339 513524 10.1016/S0020-1693(02)01046-0.CrossRefGoogle Scholar
Ding, X. and Henrichs, S., 2002 Adsorption and desorption of proteins and polyamino acids by clay minerals and marine sediments Marine Chemistry 77 225237 10.1016/S0304-4203(01)00085-8.CrossRefGoogle Scholar
Dittmar, T. and Kattner, G., 2003 The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review Marine Chemistry 83 103120 10.1016/S0304-4203(03)00105-1.CrossRefGoogle Scholar
Dittmar, T. Fitznar, H.P. and Kattner, G., 2001 Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D- and L-amino acids Geochimica et Cosmochimica Acta 65 41034114 10.1016/S0016-7037(01)00688-3.CrossRefGoogle Scholar
Dove, P.M., 1999 The dissolution kinetics of quartz in aqueous mixed cation solutions Geochimica et Cosmochimica Acta 63 37153727 10.1016/S0016-7037(99)00218-5.CrossRefGoogle Scholar
Dove, P.M. and Crerar, D.A., 1990 Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor Geochimica et Cosmochimica Acta 54 955959 10.1016/0016-7037(90)90431-J.CrossRefGoogle Scholar
Dove, P.M. and Nix, C.J., 1997 The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz Geochimica et Cosmochimica Acta 61 33293340 10.1016/S0016-7037(97)00217-2.CrossRefGoogle Scholar
Dove, P.M. Rimstidt, J.D., Heaney, P.J. and Prewitt, C.T., 1994 Silica-water interface Silica, Physical behavior, Geochemistry and Materials Applications Washington D.C. Mineralogical Society of America 259308 10.1515/9781501509698-013.CrossRefGoogle Scholar
Gupta, L.P. and Kawahata, H., 2003 Amino acids and hexosamines in the Hess Rise core during the past 220,000 years Quaternary Research 60 394403 10.1016/j.yqres.2003.07.012.CrossRefGoogle Scholar
Hedges, J.I. and Hare, P.E., 1987 Amino acid adsorption by clay minerals in distilled water Geochimica et Cosmochimica Acta 51 255259 10.1016/0016-7037(87)90237-7.CrossRefGoogle Scholar
Icenhower, J.P. and Dove, P.M., 2000 The dissolution kinetics of amorphous silica into sodium chloride solutions: Effects of temperature and ionic strength Geochimica et Cosmochimica Acta 64 41934203 10.1016/S0016-7037(00)00487-7.CrossRefGoogle Scholar
Ingalls, A.E. Lee, C. Wakeham, S.G. and Hedges, J.I., 2003 The role of biominerals in the sinking flux and preservation of amino acids in the Southern Ocean along 170°W Deep-Sea Research II 50 713738 10.1016/S0967-0645(02)00592-1.CrossRefGoogle Scholar
Jennerjahn, T.C. and Ittekkot, V., 1999 Changes in organic matter from surface waters to continental slope sediments off the Sãn Francisco River, eastern Brazil Marine Geology 161 129140 10.1016/S0025-3227(99)00045-6.CrossRefGoogle Scholar
Kawano, M. and Obokata, S., 2007 The effect of amino acids on the dissolution rates of amorphous silica in near-neutral solution Clays and Clay Minerals 55 361368 10.1346/CCMN.2007.0550404.CrossRefGoogle Scholar
Knauss, K.G. and Copenhaver, S.A., 1995 The effect of malonate on the dissolution kinetics of albite, quartz, and microcline as a function of pH at 70°C Applied Geochemistry 10 1733 10.1016/0883-2927(94)00045-8.CrossRefGoogle Scholar
Koseoglu, F. Kilic, E. and Dogan, A., 2000 Studies on the protonation constants and solvation of α-amino acids in dioxan-water mixtures Analytical Biochemistry 277 243246 10.1006/abio.1999.4371.CrossRefGoogle ScholarPubMed
Ladd, J.N. and Butler, J.H.A., 1972 Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates Soil Biology and Biochemistry 4 1930 10.1016/0038-0717(72)90038-7.CrossRefGoogle Scholar
Li, H. and Chen, F., 2000 Determination of silicate in water by ion exclusion chromatography with conductivity detection Journal of Chromatography A 874 143147 10.1016/S0021-9673(00)00078-9.CrossRefGoogle ScholarPubMed
Lipson, A.A. Schmidt, S.K. and Monson, R.K., 1999 Links between microbial population dynamics and nitrogen availability in an alpine ecosystem Ecology 80 16231631 10.1890/0012-9658(1999)080[1623:LBMPDA]2.0.CO;2.CrossRefGoogle Scholar
Lipson, D.A. Raab, T.K. Schmidt, S.K. and Monson, R.K., 2001 An empirical model of amino acid transformations in an alpine soil Soil Biology and Biochemistry 33 189198 10.1016/S0038-0717(00)00128-0.CrossRefGoogle Scholar
Müller, B., 1996 ChemEQL V.2.0. A program to calculate chemical speciation and chemical equilibria Dübendorf, Switzerland Eidgenössische Anstalt für Wasserversorgung.Google Scholar
Stefano, C.D. Foti, C. Gianguzza, A. and Sammartano, S., 2000 The interaction of amino acids with the major constituents of natural waters at different ionic strengths Marine Chemistry 72 6176 10.1016/S0304-4203(00)00067-0.CrossRefGoogle Scholar
Szajdak, L. Jezierski, A. and Cabrera, M.L., 2003 Impact of conventional and no-tillage management on soil amino acids, stable and transient radicals and properties of humic and fulvic acids Organic Geochemistry 34 693700 10.1016/S0146-6380(03)00024-X.CrossRefGoogle Scholar
Tadros, T.h.F. and Lyklema, J., 1969 The electrical double layer on silica in the presence of bivalent counter ions. Electroanal Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 22 17 10.1016/S0022-0728(69)80140-3.CrossRefGoogle Scholar
Takano, Y. Sato, R. Kaneko, T. Kobayashi, K. and Marumo, K., 2003 Biological origin for amino acids in a deep subterranean hydrothermal vent, Toyoha mine, Hokkaido, Japan Organic Geochemistry 34 14911496 10.1016/S0146-6380(03)00175-X.CrossRefGoogle Scholar
Trubetskaya, O.E. Reznikova, O.I. Afanas’eva, G.V. Markova, L.F. and Trubetskoj, O.A., 1998 Amino acid distribution in soil humic acids fractionated by tandem size exclusion chromatography Polyacrylamide gel electrophoresis Environment International 24 573581 10.1016/S0160-4120(98)00036-1.CrossRefGoogle Scholar
Tryfona, T. and Bustard, M.T., 2005 Fermentative production of lysine by Corynebacterium glutamicum: transmembrane transport and metabolic flux analysis Process Biochemistry 40 499508 10.1016/j.procbio.2004.01.037.CrossRefGoogle Scholar
Ullman, W.J. Welch, S.A., Hellmann, R. and Wood, S.A., 2002 Organic ligands and feldspar dissolution Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry: A Tribute to David A. Crearar Missouri, USA St. Louis 335.Google Scholar
Umerie, S.C. Ekwealor, I.A. and Nwagbo, I.O., 2000 Lysine production by Bacillus laterosporus from various carbohydrates and seed meals Bioresource Technology 75 2492352 10.1016/S0960-8524(00)00052-3.CrossRefGoogle Scholar
van Hees, P.A.W. Jones, D.L. Finlay, R. Godbold, D.L. and Lundström, U.S., 2005 The carbon we do not see — the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: A review Soil Biology and Biochemistry 37 113 10.1016/j.soilbio.2004.06.010.CrossRefGoogle Scholar
van Roosmalen, M.L. Geukens, N. Jongbloed, J.D.H. Tjalsma, H. Dubois, J. Bron, S. van Dijl, J.M. and Anné, J., 2004 Type I signal peptidases of Gram-positive bacteria Biochimica et Biophysica Acta 1694 279297 10.1016/j.bbamcr.2004.05.006.CrossRefGoogle ScholarPubMed
Vlasova, N.N. and Golovkova, L.P., 2004 The adsorption of amino acids on the surface of highly dispersed silica Colloid Journal 66 657662 10.1007/s10595-005-0042-3.CrossRefGoogle Scholar