Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T22:39:19.818Z Has data issue: false hasContentIssue false

Enhanced Flame-Retardant Capacity of Natural Rubber/Organo-Montmorillonite and Hyper-Branched Organo-Montmorillonite Composites

Published online by Cambridge University Press:  01 January 2024

Jincheng Wang*
Affiliation:
College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China
Xi Guo
Affiliation:
College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China
Xiaoyu Zheng
Affiliation:
College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China
Yi Zhao
Affiliation:
College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China
Weifei Li
Affiliation:
College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Most natural and synthetic rubbers have inherently high flammability, a property which limits their uses. The aim of the present work was to study the effect of organo-montmorillonite (OMMT) and modified OMMT on the flame-retardance and mechanical properties of natural rubber (NR) composites. The OMMT was modified with hyper-branched polymer via condensation polymerization between the intercalation agent, N,N-di(2-hydroxyethyl)-N-dodecyl-N-methylammonium chloride, and the monomer, N,N-dihydroxyl-3-aminomethyl propionate. This modified OMMT was then reacted with phosphate, and a novel flame-retardant hyper-branched organic montmorillonite (FR-HOMMT) was thus obtained. The surface morphology, interlayer space, interlamellar structure, and thermal properties of these modified clays were investigated by Fourier-transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis. The FR-HOMMT showed increased basal spacing and better thermal stabilities due to the different arrangement and thermal stability of the novel organic macromolecular surfactant. Natural rubber NR/OMMT and NR/FR-HOMMT composites were prepared by conventional compounding with OMMT and the phosphorus-based organo-montmorillonite. The cure characteristics, tensile strength, wear resistance, thermal stabilities, and flame-retardant properties were researched and compared. The best dispersion of this modified clay was observed for 20 phr (parts per hundred of rubber) of FR-HOMMT-filled composite, which resulted in the best mechanical performance with an increase of 47% in tensile strength, of 40% in elongation at break, and decrease of 140% in abrasion loss compared with 20 phr of the OMMT-filled matrix. A mechanism for reinforcing and flame retardance is proposed here. The 'anchor' effect caused by the hyper-branched polymer may decrease the number and size of the voids in the NR matrix, and thus increase the crack path during tensile drawing. Meanwhile, the flame retardance of the OMMT and the phosphate may increase the number of carbonaceous layers, thus inhibiting the degree of pyrolysis of the NR matrix during burning.

Type
Article
Copyright
Copyright © Clay Minerals Society 2011

References

Aouad, A. Anastácio, A.S. Bergaya, F. and Stucki, J.W., 2010 A Mössbauer spectroscopic study ofal uminum- and iron-pillared clay minerals Clays and Clay Minerals 58 164173 10.1346/CCMN.2010.0580203.CrossRefGoogle Scholar
ASTM D2084-81, 2011 Standard test method for rubber property-vulcanization using oscillating disk cure meter American Society for Testing and Materials.Google Scholar
ASTM D2863-10, 2011 Standard test method for measuring the minimum oxygen concentration to support candle-like combustion ofplastics (oxygen index) American Society for Testing and Materials.Google Scholar
Boo, W.J. Liu, J. and Sue, H.J., 2006 Fracture behavior of nanoplatelet reinforced polymer nanocomposites Material Science and Technology 22 829834 10.1179/174328406X101274.CrossRefGoogle Scholar
Burwell, J.T., 1957 Survey ofpossible wear mechanism Wear 1 119123 10.1016/0043-1648(57)90005-4.CrossRefGoogle Scholar
Calderon, J.U. Lennox, B. and Kamal, M.R., 2008 Thermally stable phosphonium-montmorillonite organo-clays Applied Clay Science 40 9098 10.1016/j.clay.2007.08.004.CrossRefGoogle Scholar
Churchman, G.J. Gates, W.P. Theng, B.K.G. Yuan, G., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Clays and clay minerals for pollution control Handbook of Clay Science Amsterdam Elsevier 625675 10.1016/S1572-4352(05)01020-2.CrossRefGoogle Scholar
Dai, C.F. Li, P.R. and Yeh, J.M., 2008 Comparative studies for the effect of intercalating agent on the physical properties ofep oxy resin-clay based nanocomposite materials European Polymer Journal 44 24392447 10.1016/j.eurpolymj.2008.06.015.CrossRefGoogle Scholar
Dong, Y.M., 2004 Polymer Analysis Handbook China Petrochemical Press Beijing 521522.Google Scholar
Fang, S.L. Hu, Y. Song, L. and Wu, J., 2009 Preparation and investigation ofethylene-vinyl acetate copolymer/silicone rubber/clay nanocomposites Journal of Applied Polymer Science 113 16641670 10.1002/app.30288.CrossRefGoogle Scholar
Gatos, K.G. Sawanis, N. Apostolov, A.A. Thomann, R. and Karger-Kocsis, J., 2004 Nanocomposite formation in hydrogenated nitrile rubber (HNBR)/organo-montmorillonite as a function of intercalant type Macromolecular Materials and Engineering 289 10791086 10.1002/mame.200400214.CrossRefGoogle Scholar
Gu, Z. Song, G.J. Liu, W.S. Yang, S.J. and Gao, J.M., 2010 Structure and properties ofhyd rogenated nitrile rubber/organo-montmorillonite nanocomposites Clays and Clay Minerals 58 7278 10.1346/CCMN.2010.0580107.CrossRefGoogle Scholar
Hassan, M.A. Kozlowski, R. Obidzinski, B. Shehata, A.B. and Aziz, F.A., 2007 The effect of new flame retardant systems containing montmorillonite-butyl acrylate nanoclay on the flammability properties of polyuerethane polymer Polymer-Plastics Technology and Engineering 46 521527 10.1080/03602550701298598.CrossRefGoogle Scholar
He, H. Ding, Z. Zhu, J. Yuan, P. Xi, Y. Yang, D. and Frost, R.L., 2005 Thermal characterization of surfactant-modified montmorillonite Clay and Clay Minerals 53 287293 10.1346/CCMN.2005.0530308.CrossRefGoogle Scholar
Hedley, C.B. Yuan, G. and Theng, B.K.G., 2007 Thermal analysis ofmo ntmorillonites modified with quaternary phosphonium and ammonium surfactants Applied Clay Science 35 180188 10.1016/j.clay.2006.09.005.CrossRefGoogle Scholar
Hu, Y. Tang, Y. and Song, L., 2006 Poly(propylene)/clay nanocomposites and their application in flame retardancy Polymers for Advanced Technologies 17 235245 10.1002/pat.683.CrossRefGoogle Scholar
Ismail, H. Munusamy, Y. Mariatti, M. and Ratnam, C.T., 2008 Preparation and characterization ofEVA/S MRL/organo-clay nanocomposites: effect of blending sequences and organo-clay loading Polymer-Plastics Technology and Engineering 47 752761 10.1080/03602550802188599.CrossRefGoogle Scholar
Labruyèrè, C. Monteverde, F. Alexandre, M. and Dubois, P., 2009 Exfoliation of clays in poly(dimethylsiloxane) rubber using an unexpected couple: a silicone surfactant and water Journal of Nanoscience and Nanotechnology 9 27312738 10.1166/jnn.2009.471.CrossRefGoogle ScholarPubMed
Lagaly, G. Ogawa, M. Dekany, I., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Clay mineralorganic interactions Handbook of Clay Science Amsterdam Elsevier 309377 10.1016/S1572-4352(05)01010-X.CrossRefGoogle Scholar
Lee, S.Y. Cho, W.J. Kim, K.J. Ahn, J.H. and Lee, M., 2005 Interaction between cationic surfactants and montmorillonite under non-equilibrium conditions Journal of Colloid and Interface Science 284 667673 10.1016/j.jcis.2004.10.070.CrossRefGoogle Scholar
Li, B. Jia, H. Guan, L.M. Bing, B.C. and Dai, J.F., 2009 A novel intumescent flame-retardant system for flame-retarded LLDPE/EVA composites Journal of Applied Polymer Science 114 36263635 10.1002/app.31027.CrossRefGoogle Scholar
Liu, T.X. Lim, K.P. Tjiu, W.C. Pramoda, K.P. and Chen, Z.K., 2003 Preparation and characterization ofnyl on 11/organo-clay nanocomposites Polymer 44 35293535 10.1016/S0032-3861(03)00252-0.CrossRefGoogle Scholar
Ma, J. Xu, J. Ren, J.H. Yu, Z.Z. and Mai, Y.W., 2003 A new approach to polymer/montmorillonite nanocomposites Polymer 44 46194624 10.1016/S0032-3861(03)00362-8.CrossRefGoogle Scholar
Marlene, R. Christopher, J.G.P. Laszlo, G. Yves, L. Henri, J.M.G. and Jan-Anders, E.M., 2004 Hyperbranched polymer/montmorillonite clay nanocomposites Polymer 45 949960 10.1016/j.polymer.2003.12.015.Google Scholar
Menon, A.R.R., 1997 Flame-retardant characteristics of natural rubber modified with a bromo derivative of phosphorylated cashew nut shell liquid Journal of Fire Sciences 15 313 10.1177/073490419701500101.CrossRefGoogle Scholar
Monasterio, F.E. Dias, M.L. Pita, V.J.R.R. Erdmann, E. and Destéfanis, H.A., 2010 Effect of the organic groups of difunctional silanes on the preparation of coated clays for olefin polymer modification Clay Minerals 45 489502 10.1180/claymin.2010.045.4.489.CrossRefGoogle Scholar
Powell, C.E. and Beall, G.W., 2007 Physical properties of polymer/clay nanocomposites Physical Properties of Polymers Handbook Berlin Springer 561575 10.1007/978-0-387-69002-5_33.CrossRefGoogle Scholar
Ramesan, M.T., 2005 The effects of filler content on cure and mechanical properties ofdichlorocar bene modified styrene butadiene rubber/carbon black composites Journal of Polymer Research 11 333340 10.1007/s10965-005-6571-y.CrossRefGoogle Scholar
Ruiz-Hitzky, E. Van Meerbeek, A., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Clay minerals and organoclay-polymer nanocomposites Handbook of Clay Science Amsterdam Elsevier 583621 10.1016/S1572-4352(05)01018-4.CrossRefGoogle Scholar
Shen, W. He, H.P. Zhu, J.X. Yuan, P. Ma, Y.H. and Liang, X.L., 2009 Preparation and characterization of3-aminopropyltriethoxysilane grafted montmorillonite and acidactivated montmorillonite Chinese Science Bulletin 54 265271 10.1007/s11434-008-0559-z.CrossRefGoogle Scholar
Tan, H.M. and Luo, Y.J., 2005 Hyper-branched Polymers Beijing Chemical Industry Press.Google Scholar
Wang, J.C. and Chen, Y.H., 2007 Synthesis ofan intumescent flame retardant (IFR) agent and application in a natural rubber (NR) system Journal of Elastomers and Plastics 39 3351 10.1177/0095244307067130.Google Scholar
Wang, J.C. Chen, Y.H. and Jin, Q.Q., 2006 Preparation and characteristics ofa novel silicone rubber nanocomposite based on organophilic montmorillonite High Performance Polymers 18 325340 10.1177/0954008306061768.CrossRefGoogle Scholar
Wang, J.C. Chen, Y.H. Jin, Q.Q. Tang, Y. and Xu, M.M., 2009 Preparation, properties, and mechanism ofnov el polyurethane adhesive/organic montmorillonite nanocomposites High Performance Polymers 21 155171 10.1177/0954008308090271.CrossRefGoogle Scholar
Wang, J.C. Chen, Y.H. and Wang, J.H., 2009 Synthesis of hyperbranched organo-montmorillonite and its application into high-temperature vulcanizated silicone rubber systems Journal of Applied Polymer Science 111 658667.CrossRefGoogle Scholar
Wang, J.C. Yang, K. and Zheng, X.Y., 2009 Preparation and characterization ofh yper-branched and nano-typeorgano-montmorillonite silicate layers Proceedings of 2009 International Conference on Advanced Fibers and Polymer Materials umeII 10191022.Google Scholar
Xi, Y. Martens, W. He, H. and Frost, R.L., 2005 Thermogravimetric analysis ofor gano-clays intercalated with the surfactant octadecyltrimethylammonium bromide Journal of Thermal Analysis and Calorimetry 81 9197 10.1007/s10973-005-0750-2.CrossRefGoogle Scholar
Xia, Y. Jian, X.G. Li, J.F. Wang, X.H. and Xu, Y.Y., 2007 Synergistic effect of montmorillonite and intumescent flame retardant on flame retardance enhancement of ABS Polymer-Plastics Technology and Engineering 46 227232 10.1080/03602550601152895.CrossRefGoogle Scholar
Xie, W. Gao, Z. Pan, W.P. Hunter, D. Singh, A. and Vaia, R., 2001 Thermal degradation chemistry ofal kyl quaternary ammonium montmorillonite Chemistry of Materials 13 29792990 10.1021/cm010305s.CrossRefGoogle Scholar
Xie, W. Xie, R. Pan, W.P. Hunter, D. Koene, B. Tan, L.S. and Vaia, R., 2002 Thermal stability ofqu aternary phosphonium modified montmorillonite Chemistry of Materials 14 48374845 10.1021/cm020705v.CrossRefGoogle Scholar
Xu, B. Zheng, Q. Song, Y.H. and Shangguan, Y., 2006 Calculating barrier properties ofpolymer/clay nanocomposites: effect of clay layers Polymer 47 29042910 10.1016/j.polymer.2006.02.069.CrossRefGoogle Scholar
Yoon, K.B. Sung, H.D. Hwang, Y.Y. Noh, S.K. and Lee, D.H., 2007 Modification of montmorillonite with oligomeric amine derivatives for polymer nanocomposite preparation Applied Clay Science 38 18 10.1016/j.clay.2007.01.003.CrossRefGoogle Scholar
Zhao, F. Bao, X.J. Andrew, R.M. Gu, J.J. Wan, C.Y. and Bala, K., 2010 Effect of POSS on morphology and mechanical properties ofpol yamide 12/montmorillonite nanocomposites Applied Clay Science 47 249256 10.1016/j.clay.2009.10.018.CrossRefGoogle Scholar
Zhou, N.L. Xia, X.X. and Wang, Y.R., 2002 Study on mechanical property ofexf oliated silicone rubber/clay nanocomposites Acta Polymerica Sinica 2 253256.Google Scholar
Zhu, J.X. Zhu, L.Z. Zhu, R.L. Tian, S.L. and Li, J.W., 2009 Surface microtopography of surfactant modified montmorillonite Applied Clay Science 45 7075 10.1016/j.clay.2009.04.010.CrossRefGoogle Scholar