Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T10:52:09.540Z Has data issue: false hasContentIssue false

Encapsulation of Co phthalocyanine in alumina-pillared clays and their characterization

Published online by Cambridge University Press:  01 January 2024

Neelam Jagtap
Affiliation:
Catalysis Division, National Chemical Laboratory, Pune 411 008, India
Veda Ramaswamy*
Affiliation:
Catalysis Division, National Chemical Laboratory, Pune 411 008, India
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Alumina-pillared montmorillonite clays (Al-PILC), prepared under ultrasonic (US) agitation and normal stirring (S) methods, have been used as a host material to encapsulate Co phthalocyanine (CoPc) complex. The amount of Co varies from 0.27 to 1.48 wt.% in the samples, depending on the input concentration of Co. Powder X-ray diffraction and other characterization techniques reveal that the structure of Al-PILC remains intact after the incorporation of the complex into the pores through a pyridine solution of the complex by ultrasonic agitation. A substantial decrease in the BET surface area and total pore volume of Al-PILC points to the occupation of the CoPc moieties within the porous structure of the pillared clay. This is further supported by the observation of a band at 1489 cm−1 in the Fourier transform infrared (FTIR) spectra of the encapsulated samples. The FTIR and diffuse reflectance ultraviolet-visible (DRUV-Vis) spectral results indicate that the encapsulated CoPc complex in the clay matrix undergoes distortion in order to accommodate itself within the pores of the Al-PILC. The encapsulated samples prepared by ultrasonification show better dispersion of the complex than the samples prepared under normal stirring conditions. Compared to the ‘neat’ complex, the encapsulated samples (CoPc in Al-PILC) exhibit greater turnover in the test reaction of the oxidation of benzyl alcohol to benzaldehyde with tertbutyl hydroperoxide as the oxidant at 373 K. The method of preparation and consequent site isolation of CoPc in Al-PILC influence the catalytic activity.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Armengol, E. Corma, A. Fortiés, V. García, H. and Prince, J., (1999) Cu2+-phthalocyanine and Co2+-perfluorophthalocyanine incorporated inside Y faujasite and mesoporous MCM-41 as heterogeneous catalysts for the oxidation of cyclohexane Applied Catalysis A: General 181 305312 10.1016/S0926-860X(98)00402-5.CrossRefGoogle Scholar
Balkus, K.J. Jr. and Gabrielov, A.G., (1995) Zeolite encapsulated metal complexes Journal of Inclusion Phenomena and Molecular Recognition in Chemistry 21 159184.CrossRefGoogle Scholar
Bernstein, P.A. and Lever, A.B.P., (1992) Protonation of cobalt tetrapentoxyphthalocyanine as a function of oxidation state Inorganica Chimica Acta 198–200 543555 10.1016/S0020-1693(00)92398-3.CrossRefGoogle Scholar
Coudurier, G. and Lefebvre, F., (1994) Catalyst Characterization. Physical Techniques for Solid Materials New York Plenum Press 1144.CrossRefGoogle Scholar
De Vos, D.E. Thibault-Starzyk, F. Knops-Gerrits, P.P. Parton, R.F. and Jacobs, P.A., (1994) A critical overview of the catalytic potential of zeolite supported metal complexes Macromolecular Symposia 80 157184 10.1002/masy.19940800112.CrossRefGoogle Scholar
Ferreira, R. Silva, M. Freire, C. Castro, B. and Figueiredo, J.L., (2000) Encapsulation of copper (II) complexes with pentadentate N3O2 Schiff base ligands derived from acetylacetone in NaX zeolite Microporous Mesoporous Material 38 391401 10.1016/S1387-1811(00)00160-8.CrossRefGoogle Scholar
Ferreira, R. Freire, C. Castro, B. Carvalho, A. Pires, J. and Carvalho, M.B., (2002) Encapsulation of copper (II) complexes with pentadentate N3O2 Schiff base ligands in a pillared layered clay European Journal of Inorganic Chemistry 11 30323038 10.1002/1099-0682(200211)2002:11<3032::AID-EJIC3032>3.0.CO;2-5.3.0.CO;2-5>CrossRefGoogle Scholar
Figueras, F., (1988) Pillared clays as catalysts Catalysis Review Science and Engineering 30 457499 10.1080/01614948808080811.CrossRefGoogle Scholar
Herron, N., (1986) A cobalt oxygen carrier in zeolite Y. A molecular ‘ship in a bottle’ Inorganic Chemistry 25 47144717 10.1021/ic00246a025.CrossRefGoogle Scholar
Jacob, C.R. Varkey, S.P. and Ratnasamy, P., (1998) Zeolite-encapsulated copper (X2-salen) complexes Applied Catalysis A: General 168 353364 10.1016/S0926-860X(97)00365-7.CrossRefGoogle Scholar
Janczak, J. and Kubiak, R., (2003) Stereochemistry and properties of the M (II)-N(py) coordination bond in the low-spin dipyridinated iron (II) and cobalt (II) phthalocyanines Inorganica Chimica Acta 342 6476 10.1016/S0020-1693(02)01060-5.CrossRefGoogle Scholar
Katdare, S.P. Ramaswamy, V. and Ramaswamy, A.V., (1997) Intercalation of Al oligomers into Ca2+-montmor-illonite using ultrasonics Journal of Material Chemistry 7 21972199 10.1039/a705001a.CrossRefGoogle Scholar
Katdare, S.P. Ramaswamy, V. and Ramaswamy, A.V., (1999) Ultrasonication: a competitive method of intercalation for the preparation of alumina pillared montmorillonite catalyst Catalysis Today 49 313320 10.1016/S0920-5861(98)00438-6.CrossRefGoogle Scholar
Kobayashi, T. Kurokawa, F. Uyeda, N. and Suito, E., (1970) The metal-ligand vibrations in the infrared spectra of various metal phthalocyanines Spectrochimica Acta 20 13051311 10.1016/0584-8539(70)80036-8.CrossRefGoogle Scholar
Parton, R. De Vos, D. Jacobs, P.A., Derouane, E.G. Lemos, F. Naccache, C. and Riberio, F.R., (1992) Microporous Solids: Synthesis, Structure and Reactivity Proceedings of the NATO Advanced Study Institute on Zeolite Dordrecht, The Netherlands Kluwer 555578.Google Scholar
Pinnavaia, T.J. Tzou, M.S. Landau, S.D. and Raythatha, R.H., (1984) On the pillaring and delamination of smectite clay catalysts by polyoxy cations of aluminium Journal of Molecular Catalysis 27 195212 10.1016/0304-5102(84)85080-4.CrossRefGoogle Scholar
Raja, R. and Ratnasamy, P., (1996) Selective oxidation with copper complexes incorporated in molecular sieves Studies in Surface Science and Catalysis 101 181190 10.1016/S0167-2991(96)80228-X.CrossRefGoogle Scholar
Ramaswamy, V. Sivarama Krishnan, M. and Ramaswamy, A.V., (2002) Immobilization and characterization of copper chlorophthalocyanine on alumina-pillared montmorillonite Journal of Molecular Catalysis A: Chemical 181 8189 10.1016/S1381-1169(01)00348-X.CrossRefGoogle Scholar
Rollmann, L.D. and Iwamoto, R.T., (1968) Electrochemistry, electron paramagnetic resonance and visible spectra of cobalt, nickel, copper and metal-free phthalocyanines in dimethyl sulfoxide Journal of the American Chemical Society 90 14551463 10.1021/ja01008a013.CrossRefGoogle Scholar
Sing, K.S.W. (1970) Surface Area Determination (Everett, D.H. and Ottewill, B.H., editors). Butterworths, London, p. 25.CrossRefGoogle Scholar
Stymne, B. Sauvage, F.X. and Wettermark, G., (1980) A spectroscopic study of complexation of phthalocyanines with pyridine Spectrochimica Acta 36A 397402 10.1016/0584-8539(80)80152-8.CrossRefGoogle Scholar
Zhan, H. Wang, M. and Chen, W., (2002) In situ synthesis of metallophthalocyanines in inorganic matrix Materials Letters 55 97103 10.1016/S0167-577X(01)00629-2.CrossRefGoogle Scholar