Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T12:44:11.746Z Has data issue: false hasContentIssue false

Emanation Thermal Analysis of Natural and Chemically-Modified Vermiculite

Published online by Cambridge University Press:  01 January 2024

J. Poyato*
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, CSIC-University of Seville, c/ Américo Vespucio, s/n 41092 Sevilla, Spain
L. A. Pérez-Maqueda
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, CSIC-University of Seville, c/ Américo Vespucio, s/n 41092 Sevilla, Spain
A. Justo
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, CSIC-University of Seville, c/ Américo Vespucio, s/n 41092 Sevilla, Spain
V. Balek
Affiliation:
Institute of Inorganic Chemistry AS CR, 250 68 Řež, Czech Republic
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Emanation thermal analysis (ETA), based on radon release measurements from previously labeled samples, was used for the first time in the characterization of the thermal behavior of natural Mg2+-vermiculite (Santa Olalla, Huelva, Spain) and of Na+- and NH4+-exchanged vermiculite samples. In addition, vermiculite samples subjected to a chemical treatment with an aqueous solution of (NH4)2SiF6 and partially or totally re-saturated with Na+ ions were also investigated by ETA. The ETA results of natural Mg2+-vermiculite, Na+-vermiculite and NH4+-vermiculite gave supplementary information about microstructure changes of the samples observed under dynamic heating conditions. The method has proved to be very useful for characterization of microstructure changes due to modification in the interlayer space of samples during the heat treatment. The crystallization of vermiculite into new phases, such as enstatite (for NH4+-vermiculite and Mg2+-vermiculite) and forsterite (for Na+-vermiculite) was also observed by ETA.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

References

Balek, V., (1989) Characterisation of high-technology materials by Emanation Thermal Analysis Journal of Thermal Analysis 35 405427 10.1007/BF01904445.CrossRefGoogle Scholar
Balek, V., (1991) Emanation Thermal Analysis and its application potential Thermochimica Acta 192 117 10.1016/0040-6031(91)87142-J.CrossRefGoogle Scholar
Balek, V. and Tölgyessy, J. (1984) Emanation Thermal Analysis and other radiometric emanation methods. In: Comprehensive Analytical Chemistry, Vol. 12C (Svehla, G., editor). Elsevier, Amsterdam, 304 pp.Google Scholar
Balek, V. Malek, Z. and Klosova, E., (1998) Emanation Thermal Analysis of intercalated montmorillonitic clays Journal of Thermal Analysis and Calorimetry 53 625630 10.1023/A:1010174315993.CrossRefGoogle Scholar
Balek, V. Malek, Z. Yariv, S. and Matuschek, G., (1999) Characterization of montmorillonite saturated with various cations Journal of Thermal Analysis 56 6776 10.1023/A:1010179207262.CrossRefGoogle Scholar
Balek, V. Šubrt, J. Mitsuhashi, T. Beckman, I.N. and Györyová, K., (2002) Emanation thermal analysis — Ready to fulfil the future needs of materials characterization Journal of Thermal Analysis and Calorimetry 67 1535 10.1023/A:1013783001631.CrossRefGoogle Scholar
Breck, D.W., Blass, H. and Skeels, G.W. (1985) Silicon substituted zeolite compositions and process for preparing same. U.S. Patent 4,503,023, 27 pp.Google Scholar
Chourabi, B. and Fripiat, J.J., (1981) Determination of tetrahedral substitutions and interlayer surface heterogeneity from vibrational spectra of ammonium in smectites Clays and Clay Minerals 29 260268 10.1346/CCMN.1981.0290403.CrossRefGoogle Scholar
d’Espinose de la Caillerie, J.P. and Fripiat, J.J., (1991) ‘Dealumination’ and aluminum intercalation of vermiculite Clays and Clay Minerals 39 270280 10.1346/CCMN.1991.0390307.CrossRefGoogle Scholar
González-García, F. and García Ramos, G., (1961) Procesos de génesis y degradaciσn de vermiculita. Yacimiento de Santa Olalla (Huelva). III. Génesis de vermiculita Anales de Edafología y Agrobiología 7–8 433 447.Google Scholar
Justo, A. (1984) Estudio fisicoquímico y mineralógico de vermiculitas de Andalucía y Badajoz. PhD thesis, Universidad de Sevilla, Sevilla, Spain, 408 pp.Google Scholar
Keay, J. and Wild, A., (1961) Hydration properties of vermiculite Clay Minerals Bulletin 4 221228 10.1180/claymin.1961.004.25.02.CrossRefGoogle Scholar
MacEwan, D.M.C. Wilson, M.J., Brindley, G.W. and Brown, G., (1980) Interlayer and intercalation complexes of clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society Pp. 197–248.Google Scholar
Malek, Z. Balek, V. Garfinkel-Shweky, D. and Yariv, S., (1997) The study of the dehydration and dehydroxylation of smectites by Emanation Thermal Analysis Journal of Thermal Analysis 48 8392 10.1007/BF01978968.CrossRefGoogle Scholar
Miyake, M. Komarneni, S. and Roy, R., (1987) Dealumination of zeolites and clay minerals with SiCl4 or (NH4)2 SiF6 Clay Minerals 22 367371 10.1180/claymin.1987.022.3.13.CrossRefGoogle Scholar
Pérez-Maqueda, L.A. Caneo, O.B. Poyato, J. and Pérez-Rodríguez, J.L., (2001) Preparation and characterization of micron and submicron-sized vermiculite Physics and Chemistry of Minerals 28 6166 10.1007/s002690000133.CrossRefGoogle Scholar
Pérez Maqueda, L.A. Criado, J.M. Real, C. Balek, V. and Subrt, J., (2002) Emanation Thermal Analysis for characterization of porous hematite under in situ conditions of heating Journal of the European Ceramic Society 22 22772281 10.1016/S0955-2219(02)00013-4.CrossRefGoogle Scholar
Pérez-Rodríguez, J.L., Poyato, J., Pérez-Maqueda, L.A. and Jiménez de Haro, M.C. (2001) Thermogravimetric and emanation gas analysis of ammonium vermiculite: application to the evaluation of the layer charge. 12 th International Clay Conference, Bahía Blanca, Argentina, abstract 107.Google Scholar
Reichenbach, H.G.v., (1994) Dehydration and rehydration of vermiculites: I Phlogopitic Mg-vermiculite Clay Minerals 29 327340 10.1180/claymin.1994.029.3.04.CrossRefGoogle Scholar
Van Olphen, H., (1963) Compaction of clay sediments in the range of molecular particle distances Clays and Clay Minerals 11 178187 10.1346/CCMN.1962.0110116.CrossRefGoogle Scholar
Walker, G.F., (1956) The mechanism of dehydration of Mg-vermiculite Clays and Clay Minerals 4 101115 10.1346/CCMN.1955.0040115.CrossRefGoogle Scholar
Walker, G.F. Cole, W.F. and Mackenzie, R.C., (1957) The vermiculite minerals The Differential Thermal Investigation of Clays London Mineralogical Society Pp. 191–206.Google Scholar
Ziegler, J.F. Biersack, J.P. and Littmark, U., (1985) The Stopping and Range of Ions in Solids New York Pergamon Press.Google Scholar