Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-07T20:28:14.418Z Has data issue: false hasContentIssue false

Electrostatic Potential at the Basal (001) Surface of Talc and Pyrophyllite as Related to Tetrahedral Sheet Distortions

Published online by Cambridge University Press:  02 April 2024

William F. Bleam*
Affiliation:
Soil Science Department, University of Wisconsin, Madison, Wisconsin 53706

Abstract

Maps of the electrostatic potentials at the basal plane of talc and pyrophyllite, computed using a two-dimensional Ewald lattice-sum, reveal the effects caused by structural distortion of the phyllosilicate layer. Rotation and tilting of basal tetrahedra in phyllosilicates dramatically perturb the electrostatic potential near the (001) surface. A potential high exists at the center of each six-fold ring of the talc (001) surface. Concerted counter-rotations of basal tetrahedra by 10°, as are typical in pyrophyllite, cause the potential lows above basal oxygens rotated into the ring to overlap, eliminating the ring-centered potential highs. Expansion of the vacant site in dioctahedral minerals tilts the basal tetrahedra by 4° and moves one-third of the basal oxygens about 0.2 Å toward the center of each phyllosilicate layer and away from the (001) surface, thereby producing corrugations of the basal surface. This shift dramatically reduces the contribution of these displaced basal oxygens to the (001) surface potential. Rotation and tilting of basal tetrahedra may influence the arrangement of interlayer water molecules on smectites and other swelling phyllosilicates by the effect that these distortions have on the (001) surface potential.

Type
Research Article
Copyright
Copyright © 1990, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcover, J. F. and Giese, R. F., 1986 Energie de laison des feuillets de talc, pyrophyllite, muscovite et phlogopite Clay Miner. 21 159169.CrossRefGoogle Scholar
Appelo, C. A., 1978 Layer deformation and crystal energy of micas and related minerals. I. Structural models for M and 2Af, polytypes Amer. Mineral. 63 782792.Google Scholar
Appelo, C. A., 1979 Layer deformation and crystal energy of micas and related minerals. II. Deformation of the coordination units Amer. Mineral. 64 424431.Google Scholar
Bailey, S. W. and Bailey, S. W., 1966 The status of clay mineral structures Clays and Clay Minerals, Proc. 14th Natl. Conf, Berkeley, California, 1965 New York Pergamon Press 123.Google Scholar
Bailey, S. W., Brindley, G. W. and Brown, G., 1980 Structures of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 2123.Google Scholar
Bleam, W. F. and Hoffmann, R., 1988 Orbital interactions in phyllosilicates: Perturbations of an idealized two-dimensional, infinite silicate frame Phys. Chem. Minerals 15 398408.CrossRefGoogle Scholar
Brown, I. D., 1978 Bond valences—A simple structural model for inorganic chemistry Chem. Soc. Rev. 7 359376.CrossRefGoogle Scholar
Brown, I. D. and Shannon, R. D., 1973 Empirical bond-strength-bond-length curves for oxides Acta Crystallogr. A29 266282.CrossRefGoogle Scholar
Foot, J. D. and Colburn, E. A., 1988 Electrostatic potentials for surfaces of inorganic and molecular crystals J. Mol. Graphics 6 9399.CrossRefGoogle Scholar
Giese, R. F., 1975 Interlayer bonding in talc and pyrophyllite Clays & Clay Minerals 23 165166.CrossRefGoogle Scholar
Grim, R. E., 1968 Clay Mineralogy New York McGraw-Hill Book Co..Google Scholar
Heyes, D. M. and van Swol, F., 1981 The electrostatic potential and field in the surface region of lamina and semi-infinite point charge lattices J. Chem. Phys. 75 50515058.CrossRefGoogle Scholar
Jenkins, H. D. B. and Hartman, P., 1979 A new approach to the calculation of electrostatic energy relations in minerals: The dioctahedral and trioctahedral phyllosilicates Philos. Trans. Royal Soc. London Ser. A 293 169208.Google Scholar
Lee, W. W. and Choi, S.-I., 1980 Determination of the Madelung potential of ionic crystals with a polar surface by the Ewald method J. Chem. Phys. 72 61646168.CrossRefGoogle Scholar
Newham, R. E., 1961 A refinement of the dickite structure and some remarks on polymorphism in kaolinite minerals Mineral. Mag. 32 683704.Google Scholar
Parry, D. E., 1975 The electrostatic potential in the surface region of an ionic crystal Surface Sci. 49 433440.CrossRefGoogle Scholar
Parry, D. E., 1976 Errata: The electrostatic potential in the surface region of an ionic crystal Surface Sci. 54 195.Google Scholar
Pauling, L., 1930 The structure of the micas and related minerals Proc. Natl. Acad. Sci. U.S.A. 16 123129.CrossRefGoogle ScholarPubMed
Pentinghaus, H., 1975 Hexacelsian Fortschr. Mineral. Suppl. 753 65.Google Scholar
Radoslovich, E. W., 1963 The cell dimensions and symmetry of layer-lattice silicates. IV. Interatomic forces A mer. Mineral. 48 7699.Google Scholar
Smith, E. R., 1983 Electrostatic potential at a plane surface of a point ionic crystal Physica 120A 327338.CrossRefGoogle Scholar
Smith, J. V., 1977 Enumeration of 4-connected 3-dimen-sional nets and classification of framework silicates. I. Perpendicular linkage from simple hexagonal net Amer. Mineral. 62 703709.Google Scholar
Takéuchi, Y., 1958 A detailed investigation of the structure of hexagonal BaAl2Si2O8 with reference to its a-ß inversion Mineral. J. 2 311332.Google Scholar
Takéuchi, Y. and Donnay, G., 1959 The crystal structure of hexagonal CaAl2Si,O8 Acta Crystallogr. 12 465470.CrossRefGoogle Scholar
Zvyagin, B. B., Mishchenko, K. S. and Soboleva, S. V., 1969 Structure of pyrophyllite and talc in relation to polytypes of mica-type minerals Soviet Phys. Crystallogr. 13 511515.Google Scholar
Zvyagin, B. B., Soboleva, S. V., Vrublevskaya, Z. V., Zhu-khlistov, A. P. and Fedotov, A. F., 1972 Factors in the di trigonal rotation of the tetrahedra in the structures of layer silicates Soviet Phys. Crystallogr. (Engl, trans.) 17 466469.Google Scholar