Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T04:59:50.875Z Has data issue: false hasContentIssue false

The Electrostatic Interlayer Forces of Layer Structure Minerals

Published online by Cambridge University Press:  01 July 2024

Rossman F. Giese*
Affiliation:
Centre de Recherche sur les Solides à Organisation, Cristalline Imparfaite, C.N.R.S., 45045 Orléans CEDEX, France
*
*Permanent address: Department of Geological Sciences, State University of New York, 4240 Ridge Lea Road, Amherst, New York 14226.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using a simple ionic model, the energy necessary to expand a layer structure by a certain distance can be calculated. This has been done for a series of 15 structures including hydroxides, 2:1 and 1:1 structures of various types. Plots of energy versus separation distance show three major groups which have common bonding properties. For large separations, the group with the strongest interlayer bonds contains the brittle micas, the hydroxides, and the 1:1 structures. Intermediate bonding structures are the normal micas and the weakest bonds occur in the zero layer charge 2:1 structures. The relative energies needed for a given separation are not constant so that for small separations the zero layer charge structures such as talc and pyrophyllite are more strongly bonded than the normal micas. These groupings correlate very well with the expandability of the structures by water and other substances. It is proposed that this approach to the study of the layer structures will provide a simple theory explaining the expansion properties of layer silicates.

Резюме

Резюме

Используя простую ионную модель,можно вычислить энергию,необходимую для расширения слоистой структуры на определенное расстояние. Это было проделано для серии из 15 структур,включая гидроокиси,структуры 2:1 и 1:1 различных типов. Графики зависимости энергии от расстояния разделения указывают на 3 главных группы,которые имеют характерные связующие свойства. При большом разделении группа с сильнейшими межслойными связями включает хрупкие слюды,гидроокиси и структуры 1:1. Структурами с промежуточными связями являются структуры нормальных слюд, и слабейшими связями обладают структуры 2:1 со слоями,имеющими нулевые заряды. Относительные величины энергии,необходимые для данного разделения,не являются постоянными.Так при небольших разделениях структуры со слоями,имеющими нулевые заряды,такие как тальк и пирофиллит,связаны сильнее,чем нормальные слюды. Это группирование очень хорошо коррелируется со способностью структур к расширению водой и другими жидкостями. Предполагается использовать этот метод для изучения слоистых структур,что обеспечит простую теорию для объяснения свойств расширения слоистых силикатов.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

References

Bassett, W. A. (1960) Role of hydroxyl orientation in mica alteration: Geol. Soc. Am. Bull. 71, 449456.CrossRefGoogle Scholar
Besson, G., Mifsud, A., Tchoubar, C. and Mering, J. (1974) Order and disorder relations in the distribution of the substitutions in smectites, illites and vermiculites: Clays & Clay Minerals 22, 379384.CrossRefGoogle Scholar
Brindley, G. W. (1966) Discussions and recommendations concerning the nomenclature of clay minerals and related phyllosilicates: Clays & Clay Minerals 14, 2734.CrossRefGoogle Scholar
Brindley, G. W. (1970) Organic complexes of silicates: Reunion Hispano Belga de Minerales de la Arcilla, Madrid, 5566.Google Scholar
Brindley, G. W. and Ertem, G. (1971) Preparation and solvation properties of some variable charge montmorillonites: Clays and Clay Minerals 19, 399404.CrossRefGoogle Scholar
Giese, R. F. (1973) Interlayer bonding in kaolinite, dickite and nacrite: Clays & Clay Minerals 21, 145149.CrossRefGoogle Scholar
Giese, R. F. (1974) Surface energy calculations for muscovite: Nature Phys. Science 248, 580581.CrossRefGoogle Scholar
Giese, R. F. (1975a) Interlayer bonding in talc and pyrophyllite; Clays & Clay Minerals 23, 165166.CrossRefGoogle Scholar
Giese, R. F. (1975b) The effect of F/OH substitution on some layer-silicate minerals: Z. Krist. 141, 138144.CrossRefGoogle Scholar
Giese, R. F. and Datta, P. (1973) Hydroxyl orientations in kaolinite, dickite and nacrite: Am. Mineral. 58, 471479.Google Scholar
Gilkes, R. J., Young, R. C. and Quirk, J. P. (1972) The oxidation of octahedral iron in biotite: Clays & Clay Minerals 20, 303315.CrossRefGoogle Scholar
Guggenheim, S. and Bailey, S. W. (1975) Refinement of the margarite structure in subgroup symmetry: Am. Mineral. 60, 10231029.Google Scholar
Güven, N. (1971) The crystal structure of 2M1 phengite and 2M1 muscovite: Z. Krist. 134, 196212.Google Scholar
Hofman, U., Weiss, A., Koch, G., Mehler, A. and Scholz, A. (1956) Intracrystalline swelling, cation exchange, and anion exchange of minerals of the montmorillonite group and of kaolinite: Clays and Clay Minerals, 4, 273287.Google Scholar
Joswig, W. (1972) Neutronenbeugungsmessungen an einem 1M-Phlogopit: Neues Jahrb. Mineral. Monatsh. 1, 111.Google Scholar
Kodama, H. (1975) Diffuse scattering by X-rays and electrons in mica and mica-like minerals: Clay Mineralogy 481, 713.Google Scholar
Mackenzie, R. C. (1965) Nomenclature subcommittee of CIPEA: Clay Miner. Bull. 6, 123126.CrossRefGoogle Scholar
McCauley, J. W. and Newnham, R. E. (1973) Structure refinement of a barium mica: Z. Krist. 137, 360367.Google Scholar
Mering, J. and Pedro, G. (1969) Discussion à propos des critères de classification des phyllosilicates 2/1: Bull. Groupe Fr. Argiles 21, 130.CrossRefGoogle Scholar
Pedro, G. (1967) Commentaires sur la classification et la nomenclature des minéraux argileux: Bull. Groupe Fr. Argiles 19, 6986.CrossRefGoogle Scholar
Raynor, J. and Brown, G. (1973) The crystal structure of talc: Clays & Clay Minerals 21, 103114.CrossRefGoogle Scholar
Saalfeld, H. and Wedde, M. (1974) Refinement of the crystal structure of gibbsite, Al(OH)3: Z. Krist. 139, 129135.CrossRefGoogle Scholar
Sartori, F., Franzini, M. and Merlino, S. (1973) Crystal structure of a 2M2 lepidolite: Acta Crystallogr., B29, 573578.CrossRefGoogle Scholar
Smith, D. L., Milford, M. H. and Zucherman, J. J. (1966) Mechanism for intercalation of kaolinite by alkali acetates: Science 153, 741743.CrossRefGoogle ScholarPubMed
Steadman, R. and Nuttall, P. M. (1963) Polymorphism in cronstedtite: Acta Crystallogr. 16, 18.CrossRefGoogle Scholar
Suquet, H., Iiyama, J., Kodama, H. and Pezerat, H. (1977) Synthesis and swelling properties of saponites with increasing layer charge: Clays & Clay Minerals 25, 231242.CrossRefGoogle Scholar
Wada, K. (1961) Lattice expansion of kaolin minerals by treatment with potassium acetate: Am. Mineral. 46, 7891.Google Scholar
Wardle, R. and Brindley, G. W. (1972) The crystal structures of pyrophyllite, 1Tc, and of its dehydroxylate: Am. Mineral. 57, 732750.Google Scholar
Weiss, A., Thielepape, W. and Orth, H. (1966) Neue Kaolinit Einlagerungsverbindungen: Proc. Int. Clay Congr. Stockholm 1, 287305.Google Scholar
Zigan, F. and Rothbauer, R. (1967) Neutronenbeugungsmessungen am Brucit: Neues Jahrb. Mineral. Monatsh. 4/5, 137143.Google Scholar
Zhoukhlistov, A., Zvyagin, B. B., Soboleva, A. V. and Fedotov, A. F. (1973) The crystal structure of the dioctahedral mica 2M2 determined by high voltage electron diffraction: Clays & Clay Minerals 21, 465470.CrossRefGoogle Scholar
Zvyagin, B. B. (1967) Electron-diffraction of Clay Mineral Structures: Plenum Press, New York, 364 pp.CrossRefGoogle Scholar