Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-21T07:38:19.719Z Has data issue: false hasContentIssue false

Electron Microscopy and X-Ray Analysis of Lacustrine Clays from the Charo Canyon, State of Michoacán, Mexico

Published online by Cambridge University Press:  28 February 2024

G. Carbajal de la Torre
Affiliation:
Instituto de Investigaciones Metalúrgicas U.M.S.N.H., Apdo. Postal 52 B, C.P. 58000 Morelia, Michoacán, Mexico
I. Israde Alcántara
Affiliation:
Instituto de Investigaciones Metalúrgicas U.M.S.N.H., Apdo. Postal 52 B, C.P. 58000 Morelia, Michoacán, Mexico
J. Serrato Rodríguez
Affiliation:
Instituto de Investigaciones Metalúrgicas U.M.S.N.H., Apdo. Postal 52 B, C.P. 58000 Morelia, Michoacán, Mexico
J. Reyes-Gasga
Affiliation:
Instituto de Física, UNAM, Apdo. Postal 20-364, 01000, México, D.F., Mexico
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we analyzed by electron microscopy and X-ray diffraction (XRD) the exposed lacustrine clay in a stratigraphic column at Charo Canyon, State of Michoacán, Mexico. Smectite, cris-tobalite, albite and quartz are the main mineral species in the sediments. Smectite is the most abundant and has a nanometric twinned small particle habit. The low crystallinity of the smectite detected in some of the samples seems to be associated with instability of the paleohydrological regime in which clayey material was deposited. Iron from underlying volcanic ash is apparently responsible for the iron concentration detected in the smectite structure.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

References

Brindley, G.W. and Brown, G., 1981 Crystal structures of clay minerals and their X-ray identification .CrossRefGoogle Scholar
Carranza-Castaneda, O., 1976 Rhynchotherium falconeri del rancho La Goleta, Michoacán, Mexico Proc Congreso Latinoamericano de Geología .Google Scholar
Earley, J.W. Osthaus, B.B. and Milne, I.H., 1953 Purification and properties of montmorillonite Am Mineral 38 707710.Google Scholar
Heinemann, K. Yacamán, M.J. Yang, C.Y. and Poppa, H., 1979 The structure of small, vapodeposited particles J Cryst Growth 47 177 10.1016/0022-0248(79)90240-9.CrossRefGoogle Scholar
Huang, W.T., 1991 Petrologia, Limusa Editor 301320.Google Scholar
Israde, I., 1995 Bacini lacustri del settore centrale dell’Arco Vulcanico Mexicano Stratigrafia ed evoluzione sedimentaria basata sulle diatomee. [Ph. D. thesis] 254256.Google Scholar
Kingery, W.D., 1960 Ceramic fabrication processes Technology Press, M.I.T. and J. Wiley, New York .Google Scholar
Linares, J., 1983 La arcilla como material cerámico, características y comportamiento Cuadernos de Prehistoria de la Universidad de Granada .Google Scholar
MacEwan, D.M.C., 1944 Identification of Montmorillonite Nature 154 577579 10.1038/154577b0.CrossRefGoogle Scholar
Oberlin, A., 1961 Etudes morphologiques et structurales Traité de microscopie électronique I 525551.Google Scholar
Pinnavaia, T.J., 1983 Intercalated clay catalysts Science 220 365366 10.1126/science.220.4595.365.CrossRefGoogle ScholarPubMed
Singer, F. and Singer, S.S.. 1971. Ceramica Industrial. In: Enciclopedia de la Química Industrial, vol. I, No. 9, Ediciones Urmo, España. p 74–87, 286–294, 347367.Google Scholar
Sun-Kou, M.R., 1992 Caracterozación de una montmorillonita española con pilares Al y Zr Boletín de la Sociedad Española de Cerámica y Vidrio 31–4 293397.Google Scholar