Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-10-04T13:59:05.422Z Has data issue: false hasContentIssue false

Electrochemical Modifications in Kaolinite-Glass Bead Plugs

Mineralogical and Physico-Chemical Modifications

Published online by Cambridge University Press:  01 July 2024

A. J. Sethi
Affiliation:
Laboratoire de Physico-Chimie Minérale, de Croylaan 42, 3030 Heverlee, Belgium
A. J. Herbillon
Affiliation:
Laboratoire de Physico-Chimie Minérale, de Croylaan 42, 3030 Heverlee, Belgium
J. J. Fripiat
Affiliation:
Laboratoire de Physico-Chimie Minérale, de Croylaan 42, 3030 Heverlee, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Electrochemical treatment of kaolinite-glass bead plugs in the presence of water and CaCl2 solutions produces dissolution of the glass beads, corrosion of the anodes, and transport of the released elements toward the cathodic zone. In this area, new mineral phases (both amorphous and crystalline) are synthesized. Most of these new phases, and especially the calcium silicate hydrate (CSH-1), are well known to exhibit important cementing properties. The nature and the extent of the modifications brought about by the treatment are dependent on the nature of the electrodes, the pH and the ionic strength of the circulating electrolyte, and the duration of the treatment.

Résumé

Résumé

Le traitement électrochimique de blocs comprimés de kaolinite et de billes de verre en présence d’eau et de solution de CaCl2, entraîne une dissolution des billes de verre, une corrosion des anodes et le transport des éléments libérés vers la zone cathodique. Dans cette zone, des phases minérales nouvelles (amorphes et cristallisées) sont synthétisées. La plupart de ces phases nouvelles, et notamment le silicate de calcium hydraté (CSH-1) sont bien connues pour leurs propriétés de ciment.

La nature et l’intensité des modifications apportées par le traitement dépendent de la nature des électrodes, du pH et de la force ionique de l’électrolyte circulant et de la durée du traitement.

Kurzreferat

Kurzreferat

Die elektrochemische Behandlung von KaolinitGlasperlen-Preßlingen in Gegenwart von Wasser und CaCl2-Lösungen ruft Lösung der Glasperlen, Korrosion der Anoden und den Transport der freigesetzten Elemente in Richtung auf die Kathodenzone hervor. In diesem Bereich werden neue Mineralphasen (sowohl amorphe als auch kristalline) gebildet. Die meisten dieser neuen Phasen und besonders das Caclium-silikathydrat (CSH-1) weisen bekanntlich wichtige zementierende Eigenschaften auf.

Die Natur und das Ausmaß der durch die Behandlung hervorgerufenen Umwandlungen hängt von der Art der Elektroden, dem pH-Wert und der Ionenstärke der umlaufenden Elektrolytlösung, sowie von der Dauer der Behandlung ab.

Резюме

Резюме

Электрохимическая обработка каолинита и «пуговок» бисеров стекла в растворе воды и СаС12 повела к растворению бисеров стекла, к коррозии анодов, и к переносу освобожденных элементов в катодную зону. В этой сфере исследования синтезируются новые фации минералов (как аморфных, так и кристаллических). Большинство этих новых фаций, особенно гидроокись силиката кальция (СSН-1), как хорошо известно, проявляют склеивающую способность. Характер и степень изменений возникающих вследствие обработки зависят от свойств электродов, от рН, от ионной силы кругового движения электролита и от продолжительности обработки.

Type
Research Article
Copyright
Copyright © 1973 The Clay Minerals Society

References

Brunauer, S. and Greenberg, S. A. (1962) The hydration of tricalcium silicate and β-dicalcium silicate at room temperature: Chemistry of Cement Proc. 4th Int. Symp., Washington, 1960, pp. 135165.Google Scholar
Cahen, R. M., Marechal, J. E. M. della Faille, M. P. and Fripiat, J. J., (1965) Pore-size distribution by a rapid continuous flow method Anal. Chem. 37 133137.CrossRefGoogle Scholar
Casagrande, L., (1930) Quoted in Harton, J. M., Hamid, S., Eddy, A. and Chilingar, G. V. (1967). Effects of electrochemical treatment on selected physical properties of a clayed silt Eng. Geol. 2 191196.Google Scholar
Diamond, S., White, J. L. and Dolch, W. L., (1964) Transformation of clay minerals by calcium hydroxide attack Clays and Clay Minerals 12 359378.Google Scholar
Giessen, A. A. van der (1968) Chemical and physical properties of iron(III) oxide hydrate: Philips Res. Repts. Suppl. No. 12, pp. 88.Google Scholar
Gray, D. M. and Mitchell, J. K., (1967) Fundamental aspects of electro-osmosis in soils J. Soil Mech. Found. Div. ASCE 93 209236.CrossRefGoogle Scholar
Grim, R. E., (1968) Clay Mineralogy 2nd New York McGraw-Hill 596.Google Scholar
Hinckley, D. N., (1963) Variability in “Crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina Clays and Clay Minerals 11 229235.Google Scholar
Kardos, L. T. (1964) In Chemistry of the Soil (Edited by Bear, F. E.) pp. 376.Google Scholar
Low, P. F. and Black, C. A., (1947) Proc. Soil Sci. Soc. Am. 12 180184.CrossRefGoogle Scholar
Marshall, C. E., (1964) The Physical Chemistry and Mineralogy of Soils, Soil Materials New York Wiley 388.Google Scholar
Parks, G. A. and de Bruyn, P. L., (1962) The zero point of charge of oxides J. Phys. Chem. 66 967973.CrossRefGoogle Scholar
Reesman, A. L., Pickett, E. E. and Keller, W. D., (1969) Aluminium ions in aqueous solutions Am. J. Sci. 267 99113.CrossRefGoogle Scholar
Rieke, H. H. III., Chilingar, G. V. and Adamson, L. G. (1966). Notes on application of electrokinetic phenomena in soil stabilization: Proc. of the Int. Clay Conf, Jerusalem, 1, 381389.Google Scholar
Sethi, A. J. (1973). A study on strength and porosity of compacted mixtures of kaolinite and glass-beads, (in preparation).Google Scholar
Steinour, H. H. (1968). Unpublished data. Quoted in Willoughby, D. R., Gross, K. A., Ingles, O. G., Silva, S. R. and Spiers, V. M. (1968). The identification of reaction products in alkali-stabilized clays by electron microscopy, X-ray and electron diffraction: Proc. 4th Conf. Australian Road Res. Board. 4, 13861408.Google Scholar
Taylor, H. F. W. (1968). Crystal structures and properties of cement hydration products (Calcium silicate hydrates). Chemistry of Cements, 5th Intern. Symp. Tokyo, pp. 126.Google Scholar
Voinovitch, I. A., Debras-Guedon, J. and Louvrier, J., (1962) L’Analyse des Silicates Paris Hermann 110.Google Scholar