Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T11:33:51.588Z Has data issue: false hasContentIssue false

Effects of Potassium Removal on the b-Dimension of Phlogopite

Published online by Cambridge University Press:  01 July 2024

R. A. Leonard*
Affiliation:
Department of Soil Science, North Carolina Agricultural Experiment Station, North Carolina State University, Raleigh, N.C. 27607
S. B. Weed*
Affiliation:
Department of Soil Science, North Carolina Agricultural Experiment Station, North Carolina State University, Raleigh, N.C. 27607
*
Research Soil Scientist USDA, Watkinsville, Georgia 30677 (formerly Instructor, Department of Soil Science, North Carolina State University, Raleigh North Carolina.
Professor of Soils, North Carolina State University Raleigh, North Carolina
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Potassium was removed from 5 to 20-μ size fractions of two phlogopites by treatment with sodium tetraphenylboron and replaced with various exchange ions. The b-dimension of the mica increased with K+ removal, which suggests that the K+ ion in phlogopite acts to constrain b. This being the case, the K—O bond in phlogopite must be lengthened and weakened relative to the K—O bond in dioctahedral micas.

Résumé

Résumé

Le potassium a été extrait de fractions de 2 phlogopites mesurant entre 5 et 20 μ par un traitement au tétraphényl-bore de sodium et remplacé par différents ions échangés. La dimension b du mica a augmenté avec l’extraction de K+, ce qui suggère que l’ion de K+ dans le phlogopite limite la dimension b. Dans ce cas la liaison K—O dans le phlogopite doit être allongée et rendue plus faible par rapport à la liaison K—O dans les micas dioctahédriques.

Kurzreferat

Kurzreferat

Aus den Fraktionen in einem Grössenbereich von 5 bis 20 μ zweier Phlogopite wurde durch Behandlung mit Natriumtetraphenylbor das Kalium entfernt und durch verschiedene Austauschionen ersetzt. Die b-Dimension des Glimmers erhöhte sich bei der Entfernung des K+ was darauf hindeutet, dass das K+ Ion im Phlogopit eine b einschränkende Wirkung ausübt. Wenn das der Fall ist, so muss die K-O Bindung in Phlogopit im Vergleich mit der K—O Bindung in dioktaedrischen Glimmern verlängert und geschwächt sein.

Резюме

Резюме

Обработкой натриевым тетрафенилбором фракций от 5 до 20 мк двух образцов флогопита было осуществлено вымывание из них калия с заменой его на различные обменные ионы. С удалением К+ параметр ь слюды увеличивается; это свидетельствует о том, что ионы К+ во флогопите сжимают структуру в направлении оси ь. На этом основании делается вывод о том, что связь К-О во флогопите должна быть длиннее и слабее, чем в диоктаэдрических слюдах.

Type
Research Article
Copyright
Copyright © 1970 The Clay Minerals Society

Footnotes

*

Published with the approval of the Director as Paper No. 2962 of the Journal Series.

References

Brown, G. (1965) Significance of recent structure determinations of layer silicates for clay studies: Clay minerals 6, 7382.CrossRefGoogle Scholar
Burns, A. F. and White, J. L. (1963a). Removal of potassium alters the b-dimension of muscovite: Science 139, 3940.CrossRefGoogle ScholarPubMed
Burns, A. F. and White, J. L. (1963b). the effect of potassium removal on the b-dimension of muscovite and dioctahedral soil micas: Proc. Intern. Clay Conf., Stockholm, pp. 917.Google Scholar
Drits, V. A. (1969) Some general remarks on the structure of trioctahedral micas: Proc. Intern. Clay Conf, Tokyo, Vol. 1, 5169.Google Scholar
Kunze, G. W. (1955) Anomalies in the ethylene glycol solvation technique used in X-ray diffraction: Clays and Clay Minerals 3, 8893.Google Scholar
Leonard, R. A. and Weed, S. B. (1967) Influence of exchange ions on the b-dimensions of dioctahedral vermiculite: Clays and Clay Minerals 15, 149161.CrossRefGoogle Scholar
Leonard, R. A. and Weed, S. B. (1970) Mica weathering rates as related to mica type and composition: Clays and Clay Minerals 18, 187195.CrossRefGoogle Scholar
Mehra, O. P. and Jackson, M. (1959) Constancy of the sum of mica unit cell potassium surface and interlayer sorption surface in vermiculite-illite clays: Soil Sci. Soc. Am. Proc. 23, 101105.CrossRefGoogle Scholar
Radoslovich, E. W. (1963) The cell dimensions of layer silicates. IV. Interatomic forces: Am. Mineralogist 48, 7699.Google Scholar
Raman, K. V. and Jackson, M. L. (1966) Layer charge relations in minerals of micaceous soils and sediments: Clays and Clay Minerals 14, 5368.CrossRefGoogle Scholar
Shapiro, L. and Brannock, W. W. (1956) Rapid analysis of silicate rocks: U.S. Geol. Surv. Bui. 1036c, 1956.Google Scholar
Walker, G. F. (1956) The mechanism of dehydration of Mg-vermiculite. Clays and Clay Minerals 4, 101115.Google Scholar
Weed, S. B. and Leonard, R. A. (1963) Determination of Sr by X-ray emission in cation-exchange capacity determinations of clays: Soil Sci. Soc. Am. Proc. 27, 474475.CrossRefGoogle Scholar