Hostname: page-component-5cf477f64f-54txb Total loading time: 0 Render date: 2025-03-28T06:53:38.782Z Has data issue: false hasContentIssue false

Effect of pre-treatments on analcime synthesis from abundant clay-rich illite

Published online by Cambridge University Press:  18 March 2025

Abdellah Ait Baha*
Affiliation:
Laboratory of Physical Chemistry of Materials and Environment, Department of Chemistry, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, Marrakech, Morocco
Kamal Tabit
Affiliation:
LIPIM Laboratory, National School of Applied Sciences, Sultan Moulay Slimane University, PO Box 77, Khouribga, Morocco
Rachid Idouhli
Affiliation:
Laboratory of Physical Chemistry of Materials and Environment, Department of Chemistry, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, Marrakech, Morocco
Mohamed Hajjaji
Affiliation:
Materials Science and Process Optimization Laboratory, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, Marrakech, Morocco
Burak Dikici
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering, Ataturk University, Istanbul, 25240 Erzurum, Turkey
Mohy Eddine Khadiri
Affiliation:
Laboratory of Physical Chemistry of Materials and Environment, Department of Chemistry, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, Marrakech, Morocco
Abdesselam Abouelfida
Affiliation:
Laboratory of Physical Chemistry of Materials and Environment, Department of Chemistry, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, Marrakech, Morocco
*
Corresponding author: Abdellah Ait Baha; Email: [email protected]

Abstract

Analcime is an important nanomaterial in: heterogeneous catalysis, selective adsorption, stomatology, sensing, and nanoelectronics. Given its occurrence in limited regions worldwide, achieving low-cost, high-purity synthesis of this zeolite is crucial. The objective of the present study was to synthesize pure analcime from an abundant, naturally occurring clay-rich illite material without the use of an organic template. Various pretreatment methods – NaOH pre-fusion, sonication, and reflux – using 1.5 M NaOH were explored to enhance the material’s reactivity at nanoscale. The resulting samples were annealed hydrothermally at 150°C for 36 h. The effect of the Si/Al mass ratio, ranging from 2 to 4, was examined by incorporating a fumed silica by-product into the optimally pre-treated sample. Characterization using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), Fourier-transform infrared spectroscopy (FT-IR), and Brunauer–Emmett–Teller (BET) surface area measurement confirmed that all pre-treatment routes converted illite (Si/Al≈2) effectively into analcime, demonstrating nanoscale control and synthesis precision. The analcime content achieved 77.8% through hydrothermal synthesis without pre-treatment, while it increased to 80.2%, 83.4%, and 91.7% with sonochemical, reflux, and NaOH pre-fusion pre-treatments, respectively. Notably, high-purity analcime with superior crystallinity was attained using the NaOH pre-fusion pre-treatment of a blend of clay and fumed silica with a Si/Al ratio of 3.71. The zeolite synthesized exhibited a surface area of 23.76 m2 g–1 and a significant cation exchange capacity of 510 meq 100 g–1. These results offer valuable insights into the synthesis of organic-template-free zeolites, emphasizing the importance of precise nanoscale methodology in enhancing clay-phase reactivity. Furthermore, this study distinguishes itself as one of the few in the literature to prepare pure analcime by innovatively combining low-cost precursor clay and fumed silica, contributing to the advancement of nanoscale material synthesis and its applications in technology.

Type
Original Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdmeziem-Hamoudi, K., & Siffert, B. (1989). Synthesis of molecular sieve zeolites from a smectite-type clay material. Applied Clay Science, 4, 19.Google Scholar
Ait Baha, A., Tabit, K., Idouhli, R., Khadiri, M., Zakir, O., Dikici, B., & Abouelfida, A. (2023). Zeolitization of fumed silica and coal fly ash using the Taguchi method toward organic pollutant removal. Silicon, 15, 61736184.Google Scholar
Ait Baha, A., Ait-Karra, A., Idouhli, R., Tabit, K., Zakir, O., Dikici, B., Khadiri, M.E., & Abouelfida, A. (2024). Synergistic photocatalysis of bayerite/zeolite loaded TiO2 nanocomposites for highly efficient degradation of organic pollutants in aqueous environments. Silicon, 114.Google Scholar
Ajayi, O.A., Adefila, S.S., & Ityokumbul, M.T. (2018). Monitoring zeolite NaY formation from potassium-rich Nigerian kaolinite clay. Ain Shams Engineering Journal, 9, 16531661.Google Scholar
Akinbodunse, S.J., Ufer, K., Dohrmann, R., & Mikutta, C. (2024). Evaluation of the Rietveld method for determining content and chemical composition of inorganic X-ray amorphous materials in soils. American Mineralogist, 109, 20372051.Google Scholar
Al-Kadhi, N.S., Fotouh, A.E., Kotp, Y.H., Saad, F.A., Shah, R.K., & Rayes, S.M.E. (2024). Utilization of polyvinylpyrrolidone as an organic template for the facile synthesis of analcime nanoparticles for efficient removal of Pb(II) and Cu(II) ions from aqueous media. Silicon, 16, 13871406. SGoogle Scholar
Al-Nahari, S., Laurencin, D., & Alonso, B. (2023). Solvent-free synthesis of zeolites: new insights into the mechanism and non-mechanochemical route. Microporous and Mesoporous Materials, 350, 112445.Google Scholar
Asselman, K., Vandenabeele, D., Pellens, N., Doppelhammer, N., Kirschhock, C.E.A., & Breynaert, E. (2022). Structural aspects affecting phase selection in inorganic zeolite synthesis. Chemistry of Materials, 34, 1108111092.Google Scholar
Atta, A.Y., Jibril, B.Y., Aderemi, B.O., & Adefila, S.S. (2012). Preparation of analcime from local kaolin and rice husk ash. Applied Clay Science, 61, 813.Google Scholar
Ayele, L., Pérez-Pariente, J., Chebude, Y., & Díaz, I. (2016). Conventional versus alkali fusion synthesis of zeolite A from low grade kaolin. Applied Clay Science, 132–133, 485490.Google Scholar
Azizi, D., Ibsaine, F., Dionne, J., Pasquier, L.C., Coudert, L., & Blais, J.F. (2021). Microporous and macroporous materials state-of-the-art of the technologies in zeolitization of aluminosilicate bearing residues from mining and metallurgical industries: a comprehensive review. Microporous and Mesoporous Materials, 318, 111029.Google Scholar
Azizi, S.N., & Ehsani Tilami, S. (2013). Framework-incorporated Mn and Co analcime zeolites: Synthesis and characterization. Journal of Solid State Chemistry, 198, 138142.Google Scholar
Azizi, S.N., & Yousefpour, M. (2009). Synthesis of aluminum-rich analcime using an ethylene diamine derivative as template. Zeitschrift für anorganische und allgemeine Chemie, 635, 16541658.Google Scholar
Azizi, S.N., & Yousefpour, M. (2010). Synthesis of zeolites NaA and analcime using rice husk ash as silica source without using organic template. Journal of Materials Science, 45, 56925697.Google Scholar
Baccouche, A., Srasra, E., & El Maaoui, M. (1998). Preparation of Na-P1 and sodalite octahydrate zeolites from interstratified illite–smectite. Applied Clay Science, 13, 255273.Google Scholar
Barata-Rodrigues, P.M., Mays, T.J., & Moggridge, G.D. (2003). Structured carbon adsorbents from clay, zeolite and mesoporous aluminosilicate templates. Carbon, 41, 22312246.Google Scholar
Barthel, H., Rösch, L., and Weis, J. (2005) Fumed Silica - Production, Properties, and Applications. Organosilicon Chemistry Set: From Molecules to Materials, 761778. John Wiley & Sons, Ltd.Google Scholar
Basaldella, E.I., Kikot, A., & Pereira, E. (1990). Synthesis of zeolites from mechanically activated kaolin clays. Reactivity of Solids, 8, 169177.Google Scholar
Belviso, C., Cavalcante, F., Lettino, A., & Fiore, S. (2013). A and X-type zeolites synthesised from kaolinite at low temperature. Applied Clay Science, 80–81, 162168.Google Scholar
Belviso, C., Giannossa, L.C., Huertas, F.J., Lettino, A., Mangone, A., & Fiore, S. (2015). Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures. Microporous and Mesoporous Materials, 212, 3547.Google Scholar
Belviso, C., Cavalcante, F., Niceforo, G., & Lettino, A. (2017). Sodalite, faujasite and A-type zeolite from 2:1dioctahedral and 2:1:1 trioctahedral clay minerals. A singular review of synthesis methods through laboratory trials at a low incubation temperature. Powder Technology, 320, 483497.Google Scholar
Bentabol, M., Ruiz Cruz, M.D., Javier Huertas, F., & Linares, J. (2006). Chemical and structural variability of illitic phases formed from kaolinite in hydrothermal conditions. Applied Clay Science, 32, 111124.Google Scholar
Bohor, B.F. (1963). High-temperature phase development in illitic clays. Clays and Clay Minerals, 12, 233246.Google Scholar
Bortolini, H.R., Lima, D.S., & Perez-Lopez, O.W. (2020). Hydrothermal synthesis of analcime without template. Journal of Crystal Growth, 532, 125424.Google Scholar
Brantley, S.L. & Mellott, N.P. (2000). Surface area and porosity of primary silicate minerals. American Mineralogist, 85, 17671783.Google Scholar
Carrado, K.A., Thiyagarajan, P., & Song, K. (1997). A study of organo-hectorite clay crystallization. Clay Minerals, 32, 2940.Google Scholar
Cheng, Y., Xing, J., Bu, C., Zhang, J., Piao, G., Huang, Y., Xie, H., & Wang, X. (2019). Dehydroxylation and structural distortion of kaolinite as a high-temperature sorbent in the furnace. Minerals, 9, 587.Google Scholar
Chiang, A.S.T., Fun, S.Y., Wu, J.S., & Tsai, T.C. (2010). IR and XRD amorphous synthesis residue showing zeolitic micropores. Materials Research Society Symposium Proceedings, 1217, 113118.Google Scholar
Chouat, N., Bensafi, B., & Djafri, F. (2022). Post-synthesis fluoride treatment of analcime zeolite synthesized using a novel organic template. Crystalline, textural, and acid study. Research on Chemical Intermediates, 48, 491503.Google Scholar
Csáki, Š., Sunitrová, I., Lukáč, F., Łagód, G., & Trník, A. (2022). Thermal properties of illite-zeolite mixtures up to 1100°C. Materials, 15, 3029.Google Scholar
Cundy, C.S., & Cox, P.A. (2003). The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chemical Reviews, 103, 663701.Google Scholar
Cundy, C.S., & Cox, P.A. (2005). The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82, 178.Google Scholar
Dehmani, Y., Franco, D.S.P., Georgin, J., Lamhasni, T., Brahmi, Y., Oukhrib, R., Mustapha, B., Moussout, H., Ouallal, H., & Sadik, A. (2023). Comparison of phenol adsorption property and mechanism onto different Moroccan clays. Water, 15, 1881.Google Scholar
Den Hartog, S.A.M., Niemeijer, A.R., & Spiers, C.J. (2013). Friction on subduction megathrust faults: beyond the illite–muscovite transition. Earth and Planetary Science Letters, 373, 819.Google Scholar
Duan, A., Wan, G., Zhang, Y., Zhao, Z., Jiang, G., & Liu, J. (2011). Optimal synthesis of micro/mesoporous beta zeolite from kaolin clay and catalytic performance for hydrodesulfurization of diesel. Catalysis Today, 175, 485493.Google Scholar
Dyer, A., Tangkawanit, S., & Rangsriwatananon, K. (2004). Exchange diffusion of Cu2+, Ni2+, Pb2+ and Zn2+ into analcime synthesized from perlite. Microporous and Mesoporous Materials, 75, 273279.Google Scholar
Efimov, A.M., Pogareva, V.G., & Shashkin, A.V. (2003). Water-related bands in the IR absorption spectra of silicate glasses. Journal of Non-Crystalline Solids, 332, 93114.Google Scholar
Fotouh, A.E., Al-Farraj, E.S., Kotp, Y.H., El Rayes, S.M., Elfalleh, W., & Khezami, L. (2024). Facile synthesis of analcime (NaSi2AlO6·H2O) nanoparticles using polyethylene glycol 400 as an organic template for effective removal of Zn(II) and Cd(II) ions from aqueous solutions. Silicon, 117.Google Scholar
Frost, R.L., Kristof, J., Horvath, E., & Kloprogge, J.T. (2000). Rehydration and phase changes of potassium acetate-intercalated halloysite at 298K. Journal of Colloid and Interface Science, 226, 318327.Google Scholar
Gandhi, D., Bandyopadhyay, R., & Soni, B. (2021). Zeolite Y from kaolin clay of Kachchh, India: synthesis, characterization and catalytic application. Journal of the Indian Chemical Society, 98, 100246.Google Scholar
García, G., Aguilar-Mamani, W., Carabante, I., Cabrera, S., Hedlund, J., & Mouzon, J. (2015). Preparation of zeolite A with excellent optical properties from clay. Journal of Alloys and Compounds, 619, 771777.Google Scholar
García-Villén, F., Flores-Ruíz, E., Verdugo-Escamilla, C., & Huertas, F.J. (2018). Hydrothermal synthesis of zeolites using sanitary ware waste as a raw material. Applied Clay Science, 160, 238248.Google Scholar
Gatta, G.D., Nestola, F., & Ballaran, T.B. (2006). Elastic behavior, phase transition, and pressure induced structural evolution of analcime. American Mineralogist, 91, 568578.Google Scholar
Geus, E.R., Den Exter, M.J., & Van Bekkum, H. (1992). Synthesis and characterization of zeolite (MFI) membranes on porous ceramic supports. Journal of the Chemical Society, Faraday Transactions, 88, 31013109.Google Scholar
Han, H., Rafiq, M.K., Zhou, T., Xu, R., Mašek, O., & Li, X. (2019). A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. Journal of Hazardous Materials, 369, 780796.Google Scholar
Hegazy, E.Z., El Maksod, I.H.A., & El Enin, R.M.M.A. (2010). Preparation and characterization of Ti and V modified analcime from local kaolin. Applied Clay Science, 49, 149155.Google Scholar
Henderson, C.M.B., Hamilton, D.L., & Waters, J.P. (2014). Phase equilibria in NaAlSiO4–KAlSiO4–SiO2–H2O at 100 MPa pressure: equilibrium leucite composition and the enigma of primary analcime in blairmorites revisited. Mineralogical Magazine, 78, 171202.Google Scholar
Hillier, S. (2000). Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Minerals, 35, 291302.Google Scholar
Jamil, T.S., & Youssef, H.F. (2016). Microwave synthesis of zeolites from Egyptian kaolin: evaluation of heavy metals removal. Separation Science and Technology, 51, 28762886.Google Scholar
Jena, S.K., Dhawan, N., Rao, D.S., Misra, P.K., Mishra, B.K., & Das, B. (2014). Studies on extraction of potassium values from nepheline syenite. International Journal of Mineral Processing, 133, 1322.Google Scholar
Jha, B., & Singh, D.N. (2011). A review on synthesis, characterization and industrial applications of flyash zeolites. Journal of Materials Education, 33, 12.Google Scholar
Jiang, T., Li, G., Qiu, G., Fan, X., & Huang, Z. (2008). Thermal activation and alkali dissolution of silicon from illite. Applied Clay Science, 40, 8189.Google Scholar
Jin, Y., Liu, Z., Han, L., Zhang, Y., Li, L., Zhu, S., Li, Z.P.J., & Wang, D. (2022). Synthesis of coal-analcime composite from coal gangue and its adsorption performance on heavy metal ions. Journal of Hazardous Materials, 423, 127027.Google Scholar
Joseph, I. V., Tosheva, L., Miller, G., & Doyle, A.M. (2021). Fau-type zeolite synthesis from clays and its use for the simultaneous adsorption of five divalent metals from aqueous solutions. Materials, 14.Google Scholar
Joshi, P.N., Thangaraj, A., & Shiralkar, V.P. (1991). Studies on zeolite transformation of high-silica gmelinite into analcime. Zeolites, 11, 164168.Google Scholar
van de Kamp, P.C. (2008). Smectite-illite-muscovite transformations, quartz dissolution, and silica release in shales. Clays and Clay Minerals, 56, 6681.Google Scholar
Khaleque, A., Alam, M.M., Hoque, M., Mondal, S., Haider, J. Bin, Xu, B., Johir, M.A.H., Karmakar, A.K., Zhou, J.L., Ahmed, M.B., & Moni, M.A. (2020). Zeolite synthesis from low-cost materials and environmental applications: a review. Environmental Advances, 2, 100019.Google Scholar
Kloprogge, J.T., Duong, L.V., & Frost, R.L. (2005). A review of the synthesis and characterisation of pillared clays and related porous materials for cracking of vegetable oils to produce biofuels. Environmental Geology, 47, 967981.Google Scholar
Kropáč, K., Dolníček, Z., & Ulmanová, J. (2024). Paragenesis, composition and origin of Ba- and Ca-rich stronalsite, a rare strontium tectosilicate, in the rocks of the teschenite association, Silesian Unit, Western Carpathians, Czech Republic. Mineralogical Magazine, 141.Google Scholar
Labaied, I., Douzane, O., Promis, G., & Lajili, M. (2023). Synthesis of alkali-activated materials blended with fly ash: optimization of curing conditions and precursor dosage. Journal of Building Engineering, 79, 107863.Google Scholar
Li, J., Gao, M., Yan, W., & Yu, J. (2023a). Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties. Chemical Science, 14, 19351959.Google Scholar
Li, Q., Zhang, Y., Cao, Z., Gao, W., & Cui, L. (2010). Influence of synthesis parameters on the crystallinity and Si/Al ratio of NaY zeolite synthesized from kaolin. Petroleum Science, 7, 403409.Google Scholar
Li, R., Chawla, A., Linares, N., Sutjianto, J.G., Chapman, K.W., Martínez, J.G., & Rimer, J.D. (2018). Diverse physical states of amorphous precursors in zeolite sol gel syntheses. Industrial and Engineering Chemistry Research, 57, 84608471.Google Scholar
Li, X., Han, S., Xu, J., & Jiang, N. (2023b). Green synthesis of nano-H-ZSM-5 zeolite single-crystal aggregates via an in situ reconstruction of the topology of natural clay. Microporous and Mesoporous Materials, 350, 112441.Google Scholar
Ma, G., Bai, C., Wang, M., & He, P. (2021). Effects of Si/Al ratios on the bulk-type zeolite formation using synthetic metakaolin-based geopolymer with designated composition. Crystals, 11, 1310.Google Scholar
Ma, X., Yang, J., Ma, H., Liu, C., & Zhang, P. (2015). Synthesis and characterization of analcime using quartz syenite powder by alkali-hydrothermal treatment. Microporous and Mesoporous Materials, 201, 134140.Google Scholar
Marsh, A., Heath, A., Patureau, P., Evernden, M., & Walker, P. (2018). Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals. Applied Clay Science, 166, 250261.Google Scholar
Martín, D.A., Costafreda, J.L., Costafreda, J.L., & Presa, L. (2022). Improving the performance of mortars made from recycled aggregates by the addition of zeolitised cineritic tuff. Crystals, 12, 77.Google Scholar
Mattioli, M., & Cenni, M. (2020). Mineralogical dataset of natural zeolites from Lessini Mounts, Northern Italy: analcime, natrolite, phillipsite and harmotome chemical composition. Data in Brief, 31, 105791.Google Scholar
McCaleb, S.B. (1962). Hydrothermal products formed from montmorillonite clay systems. Clays and Clay Minerals, 9, 276294.Google Scholar
Meng, X., & Xiao, F.S. (2014). Green routes for synthesis of zeolites. Chemical Reviews, 114, 15211543.Google Scholar
Mezni, M., Hamzaoui, A., Hamdi, N., & Srasra, E. (2011). Synthesis of zeolites from the low-grade Tunisian natural illite by two different methods. Applied Clay Science, 52, 209218.Google Scholar
Mintova, S., & Valtchev, V. (2002). Effect of the silica source on the formation of nanosized silicalite-1: an in situ dynamic light scattering study. Microporous and Mesoporous Materials, 55, 171179.Google Scholar
Moneim, M.A., & Ahmed, E.A. (2015). Synthesis of faujasite from Egyptian clays: characterizations and removal of heavy metals. Geomaterials, 5, 6876.Google Scholar
Mourak, A., Hajjaji, M., Alagui, A., Martin, P., & Joly, N. (2021). Effects of geomaterial-originated fillers on microstructure and mechanical/physical properties of α-and β-chitosan-based films. Molecules, 26.Google Scholar
Murad, E., & Wagner, U. (1996). The thermal behaviour of an Fe-rich illite. Clay Minerals, 31, 4552.Google Scholar
Murukutti, M.K., & Jena, H. (2022). Synthesis of nano-crystalline zeolite-A and zeolite-X from Indian coal fly ash, its characterization and performance evaluation for the removal of Cs+ and Sr2+ from simulated nuclear waste. Journal of Hazardous Materials, 423, 127085.Google Scholar
Musyoka, N.M., Missengue, R., Kusisakana, M., & Petrik, L.F. (2014). Conversion of South African clays into high quality zeolites. Applied Clay Science, 97–98, 182186.Google Scholar
Novembre, D., & Gimeno, D. (2021). Synthesis and characterization of analcime (ANA) zeolite using a kaolinitic rock. Scientific Reports, 11, 19.Google Scholar
Novembre, D., di Sabatino, B., Gimeno, D., & Pace, C. (2011). Synthesis and characterization of Na-X, Na-A and Na-P zeolites and hydroxysodalite from metakaolinite. Clay Minerals, 46, 339354.Google Scholar
O’Keeffe, M. (2014). Rigid, flexible and impossible zeolite and related structures. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372.Google Scholar
Osacký, M., Binčík, T., Hudcová, B., Vítková, M., Pálková, H., Hudec, P., Bačík, P., & Czímerová, A. (2017). Low-cost zeolite-based sorbents prepared from industrial perlite by-product material for Zn 2þ and Ni 2þ removal from aqueous solutions: synthesis, properties and sorption efficiency. Heliyon, e12029.Google Scholar
Otieno, S.O., Kengara, F.O., Kemmegne-Mbouguen, J.C., Langmi, H.W., Kowenje, C.B.O., & Mokaya, R. (2019). The effects of metakaolinization and fused-metakaolinization on zeolites synthesized from quartz rich natural clays. Microporous and Mesoporous Materials, 290, 109668.Google Scholar
Pereira, P.M., Ferreira, B.F., Oliveira, N.P., Nassar, E.J., Ciuffi, K.J., Vicente, M.A., Trujillano, R., Rives, V., Gil, A., Korili, S., & de Faria, E.H. (2018). Synthesis of zeolite A from metakaolin and its application in the adsorption of cationic dyes. Applied Sciences, 8, 608.Google Scholar
Perraki, T., & Orfanoudaki, A. (2004). Mineralogical study of zeolites from Pentalofos area, Thrace, Greece. Applied Clay Science, 25, 916.Google Scholar
Ranjbar Toroghi, M.R., Panahi, M., Karimi, M., Nakhaeipour, A., & Mohammadi, A. (2023). Development of the crystallinity model and investigation of the effective factors on the crystallinity of zeolite Y using the response surface method. Physics and Chemistry of Minerals, 50, 114.Google Scholar
Rayalu, S.S., Udhoji, J.S., Meshram, S.U., Naidu, R.R., & Devotta, S. (2005). Estimation of crystallinity in flyash-based zeolite-A using XRD and IR spectroscopy. Current Science, 89, 21472151.Google Scholar
Rosenberg, P.E. (2002). The nature, formation, and stability of end-member illite: a hypothesis. American Mineralogist, 87, 103107.Google Scholar
Rubtsova, M., Smirnova, E., Boev, S., Kotelev, M., Cherednichenko, K., Vinokurov, V., Lvov, Y., & Glotov, A. (2022). Nanoarchitectural approach for synthesis of highly crystalline zeolites with a low Si/Al ratio from natural clay nanotubes. Microporous and Mesoporous Materials, 330, 111622.Google Scholar
Samantray, J., Anand, A., Dash, B., Ghosh, M.K., & Behera, A.K. (2022). Silicate minerals – potential source of potash – a review. Minerals Engineering, 179, 107463.Google Scholar
Sánchez-Hernández, R., López-Delgado, A., Padilla, I., Galindo, R., & López-Andrés, S. (2016). One-step synthesis of NaP1, SOD and ANA from a hazardous aluminum solid waste. Microporous and Mesoporous Materials, 226, 267277.Google Scholar
Sengupta, P., Saikia, P.C., and Borthakur, P.C. (2008) SEM-EDX characterization of an iron-rich kaolinite clay. Journal of Scientific and Industrial Research, 67, 812818.Google Scholar
Selim, A.Q., Mohamed, E.A., Seliem, M.K., & Zayed, A.M. (2018). Synthesis of sole cancrinite phase from raw muscovite: Characterization and optimization. Journal of Alloys and Compounds, 762, 653667.Google Scholar
Sen, M., Dana, K., & Das, N. (2018). Development of LTA zeolite membrane from clay by sonication assisted method at room temperature for H2-CO2 and CO2-CH4 separation. Ultrasonics Sonochemistry, 48, 299310.Google Scholar
Sharma, P., Sutar, P.P., Xiao, H., & Zhang, Q. (2023). The untapped potential of zeolites in techno-augmentation of the biomaterials and food industrial processing operations: a review. Journal of Future Foods, 3, 127141.Google Scholar
Smyth, J.R., & Caporuscio, F.A. (1981). Review of the thermal stability and cation exchange properties of the zeolite minerals clinoptilolite, mordenite, and analcime; applications to radioactive waste isolation in silicic tuff. Los Alamos Scientific Laboratory, NM.Google Scholar
Sun, L., Xu, X., Sun, D., Chu, S., Chen, J., Shi, W., Lu, J., & Ruan, S. (2022). Synthesis of large single crystals of analcime in a template-free system. CrystEngComm, 24, 40134020.Google Scholar
Tabit, K., Waqif, M., & Saâdi, L. (2019). Application of the Taguchi method to investigate the effects of experimental parameters in hydrothermal synthesis of Na-P1 zeolite from coal fly ash. Research on Chemical Intermediates, 45, 44314447.Google Scholar
Tahmasebipour, M., Khorshidi, N., & Azadmehr, A.R. (2023). Adsorptive behaviour of nepheline syenite as a new adsorbent for removal of Ag (I) and Pb (II) ions from aqueous solution and industrial wastewater. International Journal of Environmental Analytical Chemistry, 103, 155171.Google Scholar
Tironi, A., Trezza, M.A., Irassar, E.F., & Scian, A.N. (2012). Thermal treatment of kaolin: effect on the pozzolanic activity. Procedia Materials Science, 1, 343350.Google Scholar
Tsitsishvili, V., Dolaberidze, N., Nijaradze, M., Mirdzveli, N., Amiridze, Z., Sharashenidze, T., & Gabunia, V. (2021). Application of Georgian natural analcime for production of ion exchangers. InterConf, 574585.Google Scholar
Vaičiukynienė, D., Jakevičius, L., Kantautas, A., Vaitkevičius, V., Vaičiukynas, V., & Dvořák, K. (2021). Conversion d’un sous-produit de silice en zéolites par traitement thermo-sonochimique. Ultrasonics Sonochemistry, 72, 105426.Google Scholar
Verdel, C., Niemi, N., & van der Pluijm, B.A. (2011). Variations in the illite to muscovite transition related to metamorphic conditions and detrital muscovite content: insight from the Paleozoic passive margin of the Southwestern United States. Journal of Geology, 119, 419437.Google Scholar
Wang, H., Feng, Q., Liu, K., Li, Z., Tang, X., & Li, G. (2017). Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process. Journal of Environmental Management, 196, 7279.Google Scholar
Ward, J.W. (1967). The nature of active sites on zeolites. I. The decationated Y zeolite. Journal of Catalysis, 9, 225236.Google Scholar
Yoldi, M., Fuentes-Ordoñez, E.G., Korili, S.A., & Gil, A. (2019). Zeolite synthesis from industrial wastes. Microporous and Mesoporous Materials, 287, 183191.Google Scholar
Yuan, J., Yang, J., Ma, H., & Liu, C. (2016). Crystal structural transformation and kinetics of NH4+/Na+ ion-exchange in analcime. Microporous and Mesoporous Materials, 222, 202208.Google Scholar
Yusuf, M.O. (2023). Bond characterization in cementitious material binders using Fourier-transform infrared spectroscopy. Applied Sciences, 13, 3353.Google Scholar
Zhang, H., Du, S., Wang, Y., & Xue, F. (2024a). Prevention of crystal agglomeration: mechanisms, factors, and impact of additives. Crystals, 14, 676.Google Scholar
Zhang, K., & Ostraat, M.L. (2016). Innovations in hierarchical zeolite synthesis. Catalysis Today, 264, 315.Google Scholar
Zhang, Q., Zhao, H., Liu, X., Li, R., Xia, T., Ma, Y., Wang, Y., Chen, K., Wang, J., Zeng, P., Liu, H., Liu, C., Gao, X., Xu, C., & Shen, B. (2024b). The isomorphous substitution of Si(4Al) with P in FAU zeolite and its stabilization effect. Chemical Engineering Journal, 486, 150422.Google Scholar
Zhang, W., Zhang, T., Lv, Y., Jing, T., Gao, X., Gu, Z., Li, S., Ao, H., & Fang, D. (2024c). Recent progress on the synthesis and applications of zeolites from industrial solid wastes. Catalysts, 14, 734.Google Scholar
Zhang, X., Jiang, S., Liu, S., Chen, L., & Tong, L. (2022). Influences of crystallization time and molar composition of hydrogel on the preparation of sodalite, cancrinite and analcime. Digest Journal of Nanomaterials and Biostructures, 17, 507518.Google Scholar
Zhang, Y., Xu, L., Seetharaman, S., Liu, L., Wang, X., & Zhang, Z. (2015). Effects of chemistry and mineral on structural evolution and chemical reactivity of coal gangue during calcination: towards efficient utilization. Materials and Structures/Materiaux et Constructions, 48, 27792793.Google Scholar
Zhou, X., Liu, D., Bu, H., Deng, L., Liu, H., Yuan, P., Du, P., & Song, H. (2018). XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: a critical review. Solid Earth Sciences, 3, 1629.Google Scholar