Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T03:50:23.262Z Has data issue: false hasContentIssue false

The Effect of Pressure on Order/Disorder in Kaolinite Under Wet and Dry Conditions

Published online by Cambridge University Press:  01 January 2024

Emilio Galán
Affiliation:
Departamento de Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, Apdo. 553, 41071 Sevilla, Spain
Patricia Aparicio*
Affiliation:
Departamento de Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, Apdo. 553, 41071 Sevilla, Spain
Ángel La Iglesia
Affiliation:
Instituto de Geología Económica, CSIC, Universidad Complutense de Madrid, Spain
Isabel González
Affiliation:
Departamento de Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, Apdo. 553, 41071 Sevilla, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Well ordered kaolinite was isostatically and uniaxially pressurized up to 13,200 kg/cm2 for 10 min in dry conditions and the effects of pressure on kaolinite order were determined by analyzing the shapes of two-dimensional diffraction bands on X-ray powder diffraction patterns. Increased pressure decreased the percentage of low-defect kaolinite phase, and isostatic pressure proved to be more effective than uniaxial pressure in increasing disorder, e.g. the degree of disorder resulting from 2000 kg/cm2 isostatic pressure was equivalent to that caused by a 3200 kg/cm2 uniaxial pressure. Also, the effect of high pressure was similar to that obtained with lower pressures applied several times (e.g. the effect of applying 8500 kg/cm2 pressure for 10 min was comparable to using 3200 kg/cm2 pressure five times).

In addition, six kaolinites of different structural order were isostatically pressurized up to 4000 kg/cm2 for 10 min, both in dry and wet (water) conditions. Under dry conditions, changes in structurally ordered kaolinite were comparable to those cited above whereas kaolinite pressurized in wet conditions showed a moderate improvement in structural order.

These results may contribute to our understanding of kaolinite behavior during burial diagenesis and low-grade metamorphism. In addition, these results can also be used in industry to improve kaolin technological properties that depend on kaolinite structural order by application of appropriate industrial pressure processes.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Aparicio, P. and Galán, E., (1999) Mineralogical interference on kaolinite crystallinity index measurements Clays and Clay Minerals 47 1227 10.1346/CCMN.1999.0470102.CrossRefGoogle Scholar
Aparicio, P., Ferrell, R.E. and Galán, E. (1999) A new kaolinite crystallinity index from mathematical modelling of XRD data. Abstracts volume of the 9thEUROCLAY Conference, p. 57.Google Scholar
Aparicio, P. Ferrell, R.E. Galán, E., Pascual Cosp, J. Zapatero Arenzana, J. Ramírez del Valle, A.J. and Moya García, M.V., (2001) Aplicación de la modelización matemática a los diagramas de DRX de la caolinita para mejorar el cálculo de ‘índices de cristalinidad’ Integración de Ciencia y Tecnología de las arcillas en el Contexto Tecnológico Social del Nuevo Milenio Málaga, Spain Sociedad Española de Arcillas 2129.Google Scholar
Bookin, A.S. Drits, V.A. Plançon, A. and Tchoubar, C., (1989) Stacking faults in kaolin-group minerals in the light of real structural features Clays and Clay Minerals 37 297307 10.1346/CCMN.1989.0370402.CrossRefGoogle Scholar
Brindley, G.W., Brindley, G.W. and Brown, G., (1980) Order-disorder in clay minerals structures Crystals Structures of Clay Minerals and their X-ray Identification London Mineral Society 125195.CrossRefGoogle Scholar
Brindley, G.W. and Robinson, K., (1946) Randomness in the structures of kaolinitic clay minerals Transactions of the Faraday Society 42B 109205.Google Scholar
Bristow, C.M., Murray, H.H. Bundy, W. and Harvey, C., (1993) The genesis of the China Clays of Southwest England. A Multistage story Kaolin, Genesis and Utilization Bloomington, Indiana The Clay Minerals Society 171203.Google Scholar
Chung, F.H., (1974) Quantitative interpretation of X-ray diffraction patterns. I. Matrix-fluxing method of quantitative analysis of mixtures Journal of Applied Crystallography 8 1719 10.1107/S0021889875009454.CrossRefGoogle Scholar
De Luca, S. and Slaughter, M., (1985) Existence of multiple phases and their relationship to disorder in kaolin minerals American Mineralogist 70 149158.Google Scholar
Ehrenberg, S.N. Aagaard, P. Wilson, M.J. Fraser, A.R. and Duthie, D.M.L., (1993) Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf Clay Minerals 28 325352 10.1180/claymin.1993.028.3.01.CrossRefGoogle Scholar
Galán, E. and Martin Vivaldi, J.L. (1973) Genetic classification of the Spanish kaolin deposits and their typology. Proceedings of the International Clay Conference, Madrid, 1972, pp. 737761.Google Scholar
Giese, R.F., (1982) Theoretical studies of kaolin minerals: electrostatic calculations Bulletin de Minéralogie 105 417424.CrossRefGoogle Scholar
Gomes, C. Velho, J.A. and Delgado, H., (1990) Kaolin deposits of Portugal Geociências Rev. Universdade de Aveiro 5 7589.Google Scholar
González García, F. Ruiz Abrio, M.T. and González Rodríguez, M., (1991) Effects of dry grinding on two kaolins of different degree of crystallinity Clay Minerals 26 549565 10.1180/claymin.1991.026.4.09.CrossRefGoogle Scholar
Gregg, S.J. Hill, K.F. and Parker, T.V., (1954) Grinding of kaolinite Journal of Applied Chemistry 4 666674 10.1002/jctb.5010041206.CrossRefGoogle Scholar
Hinckley, D., (1963) Variability in “crystallinity” values among the kaolin deposits of the Coastal Plain of Georgia and South Carolina Clays and Clay Minerals 11 229235 10.1346/CCMN.1962.0110122.CrossRefGoogle Scholar
Johnston, C.T. Wang, S.L. Bish, D. Dera, P. Agnew, P. Agnew, S.F. Kenney, J.W. III, (2002) Novel pressure-induced phase transformation in hydrous layered materials Geophysical Research Letters 29 17(1)17(4) 10.1029/2002GL015402.CrossRefGoogle Scholar
Kossovskaya, A.G. and Shutov, V.D., (1963) Facies of regional epi- and metagenesis International Geology Review 7 11571167 10.1080/00206816509474768.CrossRefGoogle Scholar
La Iglesia, A., (1993) Pressure-induced disorder in kaolinite Clay Minerals 28 311319 10.1180/claymin.1993.028.2.11.CrossRefGoogle Scholar
Laws, W.D. and Page, J.B., (1946) Changes produced in kaolin by grinding Soil Science 62 319336 10.1097/00010694-194610000-00006.CrossRefGoogle Scholar
Martín Pozas, J.M. Rodriguez Gallego, M. and Martín Vivaldi, J.L., (1969) Análisis cuantitativo de filosilicatos de la arcilla por difracción de rayos-X. IV El grado de orientación en el método del standard interno Anales de la Real Sociedad Española de Física y Química LV 109112.Google Scholar
Martín Vivaldi, J.L. Rodriguez Gallego, M. and Martín Pozas, J.M., (1968) Análisis cuantitativo de filosilicatos de la arcilla por difracción de rayos — X. I Modificación del difractómetro de rayos-X para estudios de orientación preferente Anales de la Real Sociedad Española de Física y Química LIV 1923.Google Scholar
Morandi, N., Rossi, P.L. and Tranne, C.A. (1992) Excursion guide-book of Vulcano and Lipari. Mediterranean Clay Meeting, MCM’ 92, Lipari (Italy).Google Scholar
Murray, H.H., (1954) Structural variations of some kaolinites in relation to dehydrated halloysite American Mineralogist 39 97108.Google Scholar
Patterson, C.H. Murray, H.H. and Lefond, S.J., (1975) Clays Industrial Minerals and Rocks 4 New York American Institute of Mechanical Engineers 519585.Google Scholar
Plançon, A. and Tchoubar, C., (1977) Determination of structural defects in phyllosilicates by X-ray powder diffraction. II. Nature and proportion of defects in natural kaolinites Clays and Clay Minerals 25 436450 10.1346/CCMN.1977.0250610.CrossRefGoogle Scholar
Plançon, A. and Zacharie, C., (1990) An expert system for the structural characterization of kaolinites Clay Minerals 25 249260 10.1180/claymin.1990.025.3.01.CrossRefGoogle Scholar
Range, K.J., Range, A. and Weiss, A. (1969) Fire-clay type kaolinite or fire-clay minerals? Experimental classification of kaolinite-halloysite minerals. Proceedings of the International Clay Conference Tokyo, pp. 313.Google Scholar
Reynolds, R.C. and Bish, D.L., (2002) The effects of grinding on the structure of a low-defect kaolinite American Mineralogist 87 16261630 10.2138/am-2002-11-1212.CrossRefGoogle Scholar
Ruiz Cruz, M.D. and Andreo, B., (1996) Genesis and transformation of dickite in Permo-Triassic sediments (Betic Cordilleras, Spain) Clay Minerals 31 133152 10.1180/claymin.1996.031.2.01.CrossRefGoogle Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierre Shale. US Geological Survey, Professional Paper 391-C.CrossRefGoogle Scholar
Takahashi, H., (1959) Effects of dry grinding on kaolin minerals Clays and Clay Minerals 6 279291 10.1346/CCMN.1957.0060121.CrossRefGoogle Scholar
Van Olphen, H. and Fripiat, J.J., (1979) Data Handbook for Clay Materials and Other Non-metallic Minerals Oxford, UK Pergamon Press.Google Scholar