Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T03:35:41.028Z Has data issue: false hasContentIssue false

Effect of Phosphate on the Formation of Nanophase Lepidocrocite from Fe(II) Sulfate

Published online by Cambridge University Press:  28 February 2024

Jesús Cumplido*
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo. 3048, 14080 Córdoba, Spain
Vidal Barrón
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo. 3048, 14080 Córdoba, Spain
José Torrent
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo. 3048, 14080 Córdoba, Spain
*
E-mail of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of phosphate on the formation of Fe oxides from Fe(II) salts is important because phosphate is a ubiquitous anion in natural environments. For this reason, the products formed by oxidation of phosphate-containing Fe(II)SO4 solutions neutralized with bicarbonate were characterized. The rate of oxidation of Fe(II) increased with increasing P/Fe atomic ratio to 0.2 in the initial solution. Goethite (α-FeOOH) or lepidocrocite (γ-FeOOH) or both were produced and identified by powder X-ray diffraction (XRD). The ratio between lepidocrocite and goethite increased with increasing P/Fe. In the 5–8.5 pH range, the formation of goethite predominated at P/Fe < 0.005, but only lepidocrocite was detected by XRD for P/Fe > 0.02. Thus, phosphate favors lepidocrocite formation because lepidocrocite has (1) a layered structure (like its precursor green rust), and (2) a structure less dense than that of goethite, thereby requiring less complete removal of the green-rust interlayer phosphate to form. The lepidocrocite crystals were platy, with prominent {010} faces and the thickness of the plates decreased with increasing P/Fe from >25 nm for P/Fe < 0.005 to <5 nm for P/Fe > 0.1. The solubility of lepidocrocite in acid oxalate was nearly complete for P/Fe > 0.03. The lepidocrocite contained occluded phosphate, i.e., phosphate that could not be desorbed by alkali treatment. The decrease in the b unit-cell length with increasing P/Fe suggests that lepidocrocite may contain structural P.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Barrón, V. and Torrent, J., (1986) Use of the Kubelka-Munk theory to study the influence of iron oxides on soil color Journal of Soil Science 37 499510 10.1111/j.1365-2389.1986.tb00382.x.CrossRefGoogle Scholar
Barrón, V. Gálvez, N. Hochella, MF Jr and Torrent, J., (1997) Epitaxial overgrowth of goethite on hematite synthesized in phosphate media: A scanning force and transmission electron microscopy study American Mineralogist 82 10911100 10.2138/am-1997-11-1206.CrossRefGoogle Scholar
Bish, D.L., Reynolds, R.C. and Walker, J.R., (1993) Studies of clays and clay minerals using X-ray powder diffraction and the Rietveld method Computer Applications to X-ray Diffraction Analysis of Clay Minerals Boulder, Colorado The Clay Mineral Society 79121.Google Scholar
Cabrera, F. de Arambarri, P. Madrid, L. and Toca, C.G., (1981) Desorption of phosphate from iron oxides in relation to equilibrium pH and porosity Geoderma 26 203216 10.1016/0016-7061(81)90016-1.CrossRefGoogle Scholar
Carlson, L. and Schwertmann, U., (1990) The effect of CO2 and oxidation rate on the formation of goethite versus lepidocrocite from an Fe(II) system at pH 6 and 7 Clay Minerals 25 6571 10.1180/claymin.1990.025.1.07.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., (1996) The Iron Oxides Weinheim VCH.Google Scholar
de Mello, J.W.V. Barrón, V. and Torrent, J., (1998) Phosphorus and iron mobilization in flooded soils from Brazil Soil Science 163 122132 10.1097/00010694-199802000-00006.CrossRefGoogle Scholar
Detournay, J. Ghodsi, M. and Derie, R., (1975) Influence de la température et de la présence des ions etrangers sur la cinétique et le mécanisme de la formation de la goethite en milieu aqueux Zeitschrift für Anorganische und Allgemeine Chemie 412 184192 10.1002/zaac.19754120212.CrossRefGoogle Scholar
Eynard, A. d. Campillo, M.C. Barrön, V. and Torrent, J., (1992) Use of vivianite (Fe3(PO4)2·8H2O) to prevent iron chlorosis in calcareous soils Fertilizer Research 31 6167 10.1007/BF01064228.CrossRefGoogle Scholar
Forsyth, J.B. Hedley, J.G. and Johnson, C.E., (1968) The magnetic structure and hyperfine field of goethite (α-Fe-OOH) Journal of Physics C 1 179188 10.1088/0022-3719/1/1/321.CrossRefGoogle Scholar
Frini, A. and Elmaaoui, M., (1997) Kinetics of the formation of goethite in the presence of sulfates and chlorides on monovalent cations Journal of Colloid and Interface Science 190 269277 10.1006/jcis.1997.4845.CrossRefGoogle ScholarPubMed
Gâlvez, N. Barrön, V. and Torrent, J., (1999) Effect of phosphate on the crystallization of hematite, goethite, and lepidocrocite from ferrihydrite Clays and Clay Minerals 47 304311 10.1346/CCMN.1999.0470306.CrossRefGoogle Scholar
Gâlvez, N. Barrön, V. and Torrent, J., (1999) Preparation and properties of hematite with structural phosphorus Clays and Clay Minerals 47 375385 10.1346/CCMN.1999.0470314.CrossRefGoogle Scholar
Hansen, H.C.B. and Poulsen, I.E., (1999) Interaction of synthetic sulphate “green rust” with phosphate and the crystallization of vivianite Clays and Clay Minerals 47 312318 10.1346/CCMN.1999.0470307.CrossRefGoogle Scholar
Krishnamurti, G.S.R. and Huang, P.M., (1991) Influence of citrate on the kinetics of Fe(II) oxidation and the formation of iron oxyhydroxides Clays and Clay Minerals 39 2834 10.1346/CCMN.1991.0390104.CrossRefGoogle Scholar
Krishnamurti, G.S.R. and Huang, P.M., (1993) Formation of lepidocrocite from iron(II) solutions: Stabilization by citrate Soil Science Society of America Journal 57 861867 10.2136/sssaj1993.03615995005700030037x.CrossRefGoogle Scholar
Krishnamurti, G.S.R. Huang, P.M. and Ruellan, P.e.d.A., (1998) The influence of pH and silicic acid concentration on Fe(II) transformations 16th World Congress of Soil Science, Summaries, Volume I Montpellier, France ISSS-AFES 445.Google Scholar
Larson, A.C. and Von Dreele, R.B., (1988) GSAS. Generalized structure analysis system: Los Alamos National Laboratory Report LAUR 86-748 New Mexico Los Alamos National Laboratory.Google Scholar
Liu, C. Huang, P.M., Kodama, H. Mermut, A.R. and Torrance, J.K., (1999) Properties of iron oxides formed at various citrate concentrations Clays for Our Future. Proceedings of the 11th International Clay Conference, Ottawa, Canada 1997 Ottawa, Canada ICC97 Organizing Committee 513522.Google Scholar
Morales, M.P. González-Carreno, T. and Serna, C.J., (1992) The formation of α-Fe2O3 monodispersed particles in solution Journal of Materials Research 7 25382545 10.1557/JMR.1992.2538.CrossRefGoogle Scholar
Murphy, J. and Riley, J.A., (1962) A modified single solution method for the determination of phosphate in natural waters Analitica Chimica Acta 27 3136 10.1016/S0003-2670(00)88444-5.CrossRefGoogle Scholar
Ocaña, M. Morales, M.P. and Serna, C.J., (1995) The growth mechanism of α-Fe2O3 ellipsoidal particles in solution Journal of Colloid and Interface Science 171 8591 10.1006/jcis.1995.1153.CrossRefGoogle Scholar
Oles, A. Szytula, A. and Wanic, A., (1970) Neutron diffraction study of 7-FeOOH Physica Status Solidi 41 173177 10.1002/pssb.19700410119.CrossRefGoogle Scholar
Olson, R.V. and Ellis, R. Jr., Page, A.L. Miller, R.H. and Keeney, D.R., (1982) Iron Methods of Soil Analysis, Part 2, 2nd edition Madison, Wisconsin American Society of Agronomy and Soil Science Society of America 301312.Google Scholar
Ponnamperuma, F.N., (1972) The chemistry of submerged soils Advances in Agronomy 24 2996 10.1016/S0065-2113(08)60633-1.CrossRefGoogle Scholar
Reeves, N.J. and Mann, S., (1991) Influence of inorganic and organic additives on the tailored synthesis of iron oxides Journal of the Chemical Society Faraday Transactions 87 38753880 10.1039/ft9918703875.CrossRefGoogle Scholar
Reyes, I. and Torrent, J., (1997) Citrate-ascorbate as a highly selective extradant for poorly crystalline iron oxides Soil Science Society of America Journal 61 16471654 10.2136/sssaj1997.03615995006100060015x.CrossRefGoogle Scholar
Rietveld, H.M., (1967) Line profiles of neutron powder-diffraction peaks for structure refinement Acta Crystallographica 22 151152 10.1107/S0365110X67000234.CrossRefGoogle Scholar
Scheinost, A.C. Chavernas, A. Barron, V. and Torrent, J., (1998) Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxides in soils Clays and Clay Minerals 46 528537 10.1346/CCMN.1998.0460506.CrossRefGoogle Scholar
Schwertmann, U., (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde 105 194202 10.1002/jpln.3591050303.CrossRefGoogle Scholar
Schwertmann, U., Bigham, J.M. and Ciolkosz, E.J., (1993) Relations between iron oxides, soil color, and soil formation Soil Color Madison, Wisconsin Soil Science Society of America 5169.Google Scholar
Schwertmann, U. and Cornell, R.M., (1991) Iron Oxides in the Laboratory Weinheim VCH.Google Scholar
Sugimoto, T. and Muramatsu, A., (1996) Formation mechanism of monodispersed Fe2O, particles in dilute FeCl3 solutions Journal of Colloid and Interface Science 184 626638 10.1006/jcis.1996.0660.CrossRefGoogle Scholar
Tamura, H. Goto, K. and Nagayama, M., (1976) Effect of anions on the oxygenation of ferrous ion in neutral solutions Journal of Inorganic and Nuclear Chemistry 38 113117 10.1016/0022-1902(76)80061-9.CrossRefGoogle Scholar
Webb, P.A. and Orr, C., (1997) Analytical Methods in Fine Particle Technology Norcross, Georgia Micromeritics Instrument Corporation.Google Scholar
Weidler, P.G., (1995) Oberflächen und Porositäten synthetischer Eisenoxide München, Germany Technische Universität München.Google Scholar
Weidler, P.G. Luster, J. Schneider, J. Sticher, H. and Gehring, A.U., (1998) The Rietveld method applied to the quantitative mineralogical and chemical analysis of a ferralitic soil European Journal of Soil Science 49 95105 10.1046/j.1365-2389.1998.00138.x.CrossRefGoogle Scholar