Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T14:54:09.448Z Has data issue: false hasContentIssue false

Effect of Phosphate on the Crystallization of Hematite, Goethite, and Lepidocrocite from Ferrihydrite

Published online by Cambridge University Press:  28 February 2024

Natividad Gálvez
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo. 3048, 14080 Córdoba, Spain
Vidal Barrón
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo. 3048, 14080 Córdoba, Spain
José Torrent
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo. 3048, 14080 Córdoba, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigated the crystallization of ferrihydrite prepared by hydrolysis of Fe(NO3)3 solutions containing phosphate. Crystallization was studied at different pH (3–9), temperatures (298, 323, and 373 K), and initial P/Fe atomic ratios for periods to 730 d. Generally, crystallization was inhibited or only poorly crystallized lepidocrocite was formed at P/Fe > 2.5%. Phosphate favored the formation of hematite over goethite at all temperatures for most of the pH and P/Fe ranges investigated. This result is consistent with a model in which phosphate acts as a template for hematite formation, in analogy with other anions, such as oxalate. However, goethite was preferentially formed at alkaline pH and P/Fe > 1%, probably because high phosphate concentration resulted in a large increase in the negative charge of the ferrihydrite particles. This resulted in turn in less aggregation, a process that is known to precede dehydration to hematite. Phosphate greatly influenced the morphology of hematite and goethite. Hematite was often ellipsoidal or spindle-shaped. Twinned goethite crystals with a hematite core were formed at alkaline pH at P/Fe > 1%. Both hematite and goethite particles incorporated phosphate in an occluded form not desorbable by repeated alkali treatments.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Barrón, V. Gálvez, N. Hochella, M.F. Jr and Torrent, J., 1997 Epitaxial overgrowth of goethite on hematite synthesized in phosphate media: A scanning force and transmission electron microscopy study American Mineralogist 82 10911100 10.2138/am-1997-11-1206.CrossRefGoogle Scholar
Barton, T.F., 1990 The effect of surface modification on the crystal growth of iron oxides .Google Scholar
Biber, M.V. Alfonso, M.S. and Stumm, W., 1994 The coordination chemistry of weathering: IV. Inhibition of the dissolution of oxide minerals Geochimica et Cosmochim-ica Acta 58 19992010 10.1016/0016-7037(94)90280-1.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., 1979 Influence of organic anions on the crystallization of ferrihydrite Clays and Clay Minerals 27 402410 10.1346/CCMN.1979.0270602.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., 1996 The Iron Oxides .Google Scholar
Fischer, W.R. and Schwertmann, U., 1975 The formation of hematite from amorphous iron (III) hydroxide Clays and Clay Minerals 23 3337 10.1346/CCMN.1975.0230105.CrossRefGoogle Scholar
Glasauer, S.M., 1995 Silicate associated with Fe(hydr)oxides .Google Scholar
Gruenhagen, S.E. Schulze, D.G. and Johnston, C.T., 1996 Phosphate adsorbed on and occluded in ferrihydrite Agronomy Abstracts .Google Scholar
Kandori, K. Uchida, S. Kataoka, S. and Ishikawa, T., 1992 Effects of silicate and phosphate ions on the formation of ferric oxide hydroxide particles Journal of Materials Science 27 719728 10.1007/BF02403885.CrossRefGoogle Scholar
Livage, J. Henry, M. and Sanchez, C., 1988 Solgel chemistry of transition metal oxides Progress in Solid State Chemistry 18 259341 10.1016/0079-6786(88)90005-2.CrossRefGoogle Scholar
Matijevic, E., 1993 Preparation and properties of uniform size colloids Chemistry of Materials 5 412426 10.1021/cm00028a004.CrossRefGoogle Scholar
Morales, M.P., González-Carreño, T. and Serna, C.J. (1992) The formation of α-Fe2O3 monodispersed particles in solution. Journal of Materials Research, 7, 2539–2444.CrossRefGoogle Scholar
Murphy, J. and Riley, J.P., 1962 A modified single solution method for the determination of phosphate in natural waters Analytica Chimica Acta 27 3136 10.1016/S0003-2670(00)88444-5.CrossRefGoogle Scholar
Ocaña, M. Morales, M.P. and Serna, C.J., 1995 The growth mechanism of α-Fe2O3 ellipsoidal particles in solution Journal of Colloid and Interface Science 171 8591 10.1006/jcis.1995.1153.CrossRefGoogle Scholar
Olson, R.V. Ellis, R. Jr, Page, A.L. Miller, R.H. and Keeney, D.R., 1982 Iron Methods of Soil Analysis, Part 2, 2nd edition 301312.CrossRefGoogle Scholar
Ozaki, M. Krathovil, S. and Matijevic, E., 1984 Formation of monodispersed spindle type hematite particles Journal of Colloid and Interface Science 137 546549 10.1016/0021-9797(90)90427-P.CrossRefGoogle Scholar
Paige, C.R. Snodgrass, W.J. Nicholson, R.V. Scharer, J.M. and He, Q.H., 1997 The effect of phosphate on the transformation of ferrihydrite into crystalline products in alkaline media Water, Air, and Soil Pollution 91 397412.CrossRefGoogle Scholar
Reeves, N.J. and Mann, S., 1991 Influence of inorganic and organic additives on the tailored synthesis of iron oxides Journal of the Chemical Society Faraday Transactions 87 38753880 10.1039/ft9918703875.CrossRefGoogle Scholar
Schwertmann, U., 1964 Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-lösung Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde 105 194202 10.1002/jpln.3591050303.CrossRefGoogle Scholar
Schwertmann, U., 1969 Der Einfluss einfacher organischer Anionen auf die Bildung von Goethit und Hämatit aus amorphem Fe(III)-hydroxid Geoderma 3 207214 10.1016/0016-7061(70)90020-0.CrossRefGoogle Scholar
Schwertmann, U. and Murad, E., 1983 Effect of pH on the formation of goethite and hematite from ferrihydrite Clays and Clay Minerals 31 277284 10.1346/CCMN.1983.0310405.CrossRefGoogle Scholar
Sugimoto, T. Muramatsu, A. Sakata, K. and Shindo, D., 1993 Characterization of hematite particles of different shapes Journal of Colloid and Interface Science 158 420428 10.1006/jcis.1993.1274.CrossRefGoogle Scholar
Torrent, J., Auerswald, K. Stanjek, H. and Bigham, J.M., 1997 Interactions between phosphate and iron oxide Soils and Environment, Advances in GeoEcology 30 321344.Google Scholar
Willett, I.R. Chartres, C.J. and Nguyen, T.T., 1988 Migration of phosphate into aggregated particles of ferrihydrite Journal of Soil Science 39 275282 10.1111/j.1365-2389.1988.tb01214.x.CrossRefGoogle Scholar