Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T19:11:10.387Z Has data issue: false hasContentIssue false

Effect of pH on the rheological behavior of pure and interstratified smectite clays

Published online by Cambridge University Press:  01 January 2024

Saoussen Laribi*
Affiliation:
Laboratoire de Mécanique, CNRS UMR 8579, Ecole Centrale Paris, Châtenay-Malabry, France Institut National de la Recherche Scientifique et Technique, Hammam-Lif, Tunisia
Jean-Marie Fleureau
Affiliation:
Laboratoire de Mécanique, CNRS UMR 8579, Ecole Centrale Paris, Châtenay-Malabry, France
Jean-Louis Grossiord
Affiliation:
Laboratoire de Physique Pharmaceutique, CNRS UMR 8612, Faculté de Pharmacie, Université Paris Sud, Châtenay-Malabry, France
Nejia Kbir-Ariguib
Affiliation:
Institut National de la Recherche Scientifique et Technique, Hammam-Lif, Tunisia
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of pH and ionic strength on the rheological behavior of aqueous suspensions of both crude and purified Wyoming bentonite and natural interstratified illite-smectite from Tunisia were investigated. Flow tests were performed on the four clay suspensions at a 10% clay concentration at different pH values. They showed that the rheological properties were highly sensitive to pH and the nature of the clay. The evolution of the yield stress as a function of pH is characterized by the presence of maxima and minima attributed to changes in the mode of association of the particles. The effect of pH on the behavior of clay suspended in NaCl solutions was also studied. The results show that the presence of NaCl has very little effect on the pH and yield stress values of the four materials.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Abend, S. and Lagaly, G., (2000) Sol-gel transitions of sodium montmorillonite dispersions Applied Clay Science 16 201227 10.1016/S0169-1317(99)00040-X.CrossRefGoogle Scholar
API — American Petroleum Institute, Specification for oil-well drilling-fluid materials Specification (1990) 13A 13.Google Scholar
Annabi-Bergaya, F., (1978) Organisation de molécules polaires adsorbées par la montmorillonite France Univ. Orléans Doctoral thesis.Google Scholar
Bailey, S.W., (1980) Summary of recommendations of AIPEA Nomenclature Committee Clay Minerals 15 8593 10.1180/claymin.1980.015.1.07.CrossRefGoogle Scholar
Benna, M. Ariguib, N. Magnin, A. and Bergaya, F., (1999) Effect of pH on rheological properties of purified sodium bentonite suspensions Journal of Colloid and Interface Science 218 442445 10.1006/jcis.1999.6420.CrossRefGoogle ScholarPubMed
Blanc, R. Van Damme, H., Guazzelli, E. and Oger, L., (1995) Rheology of Pastes Mobile Particulate Systems Dordrecht, The Netherlands Kluwer Academic Publishers 129160 10.1007/978-94-015-8518-7_10.CrossRefGoogle Scholar
Brandenburg, U. and Lagaly, G., (1988) Rheological properties of sodium montmorillonite dispersions Applied Clay Science 3 263279 10.1016/0169-1317(88)90033-6.CrossRefGoogle Scholar
Callaghan, I.C. and Ottewill, R.H., (1974) Interparticle forces in montmorillonite gels Faraday Discussions of the Chemical Society 57 110118 10.1039/dc9745700110.CrossRefGoogle Scholar
Carter, D.L. Heilman, M.D. and Gonzalez, C.L., (1965) Ethylene glycol monoethylether for determining surface area of silicate minerals Soil Science 100 356360 10.1097/00010694-196511000-00011.CrossRefGoogle Scholar
Coussot, P. van Damme, H., Ildefonse, B. Allain, C. and Coussot, P., (1997) Physico-chimie et rhéologie des mélanges argiles-eau Des Écoulements Naturels à la Dynamique du tas de Sable. Introduction aux Suspensions en Géologie et en Physique Antony, France Cemagref Edition 169192.Google Scholar
Flegmann, B.A. Goodwin, J.W. and Ottewill, R.H., (1969) Rheological studies on kaolinite suspensions Proceedings of the British Ceramic Society 13 3145.Google Scholar
Grim, R.E., (1968) Clay Mineralogy 2nd New York McGraw-Hill 596 pp.Google Scholar
Heath, D. and Tadros, T.F., (1983) Influence of pH, electrolyte, and polyvinyl alcohol addition on the rheological characteristics of aqueous dispersions of sodium montmorillonite Journal of Colloid and Interface Science 93 307319 10.1016/0021-9797(83)90415-0.CrossRefGoogle Scholar
Huifang, Z. Low, P.F. and Bradford, J.M., (1991) Effects of pH and electrolyte concentration on particle interaction in three homoionic sodium soil clay suspensions Soil Science 151 196207 10.1097/00010694-199103000-00002.Google Scholar
Lagaly, G., (1989) Principle flow of kaolin and bentonite dispersions Applied Clay Science 4 105123 10.1016/0169-1317(89)90003-3.CrossRefGoogle Scholar
Laribi, S., (2003) Etude des propriétés physico-chimiques, rhéologiques et de filtration de deux argiles bentonitiques France Ecole Centrale Paris Doctoral thesis.Google Scholar
Laribi, S. Fleureau, J.M. Grossiord, J.L. and Ariguib, N., (2005) Comparative yield stress determination for pure and interstratified smectite clays Rheologica Acta 44 262269 10.1007/s00397-004-0406-3.CrossRefGoogle Scholar
Lubetkin, S.D. Middleton, S.R. and Ottewill, R.H., (1984) Some properties of clay-water dispersions Philosophical Transactions of the Royal Society of London A 311 353368 10.1098/rsta.1984.0033.Google Scholar
Luckham, P.F. and Rossi, S., (1999) The colloidal and rheological properties of bentonite suspensions Advances in Colloid and Interface Science 82 4392 10.1016/S0001-8686(99)00005-6.CrossRefGoogle Scholar
M’Ewan, M.B. and Pratt, M.I., (1957) The gelation of montmorillonite Transactions of the Faraday Society 5 535547.Google Scholar
Magnin, A. and Piau, J.-M., (1990) Cone and plate rheometry of yield stress fluids study of an aqueous gel Journal of Non Newtonian Fluid Mechanics 36 85108 10.1016/0377-0257(90)85005-J.CrossRefGoogle Scholar
Mauguin, C., (1928) Etude des micas au moyen des rayons X Bulletin de la Sociète française de Mineralogie 51 285332.CrossRefGoogle Scholar
Nicol, S.K. and Humter, R.J., (1970) Some rheological and electrokinetic properties of kaolinite suspensions Australian Journal of Chemistry 23 21772186 10.1071/CH9702177.CrossRefGoogle Scholar
Norrish, K., (1954) The swelling of montmorillonite Discussions of the Faraday Society 18 120134 10.1039/df9541800120.CrossRefGoogle Scholar
Pignon, F. Magnin, F. and Piau, J.-M., (1996) Thixotropic colloidal suspensions and flow curves with minimum identification of flow regimes and rheometric consequences Journal of Rheology 40 573587 10.1122/1.550759.CrossRefGoogle Scholar
Permien, T. and Lagaly, G., (1994) The rheological and colloidal properties of bentonite dispersion in the presence of organic compounds IV. Sodium montmorillonite and acids Applied Clay Science 9 251263 10.1016/0169-1317(94)90003-5.CrossRefGoogle Scholar
Permien, T. and Lagaly, G., (1994) The rheological and colloidal properties of bentonite dispersion in the presence of organic compounds III. The effect of alcohols on the coagulation of sodium montmorillonite Colloid and Polymer Science 272 13061312 10.1007/BF00657786.CrossRefGoogle Scholar
Pons, C.H. Rousseau, F. and Tchoubar, D., (1981) Utilisation de rayonnement synchrotron en diffusion aux petits angles pour l’étude du gonflement des smectites. Etude du système eau-montmorillonite-Na en fonction de la température Clay Minerals 16 2342 10.1180/claymin.1981.016.1.02.CrossRefGoogle Scholar
Rand, B. and Melton, I.E., (1977) Particle interactions in aqueous kaolinite suspensions. Part I — Effect of pH and electrolyte upon the mode of particle interaction in homoionic sodium kaolinite suspensions Journal of Colloid and Interface Science 60 308336 10.1016/0021-9797(77)90290-9.CrossRefGoogle Scholar
Schofield, R.K. and Samson, H.R., (1954) Flocculation of kaolinite due to the attraction of oppositely charged crystal faces Discussions of the Faraday Society 18 135145 10.1039/df9541800135.CrossRefGoogle Scholar
Sohm, R. and Tadros, T.F., (1989) Viscoelastic properties of sodium montmorillonite (Gelwhite H) suspensions Journal of Colloid and Interface Science 132 6271 10.1016/0021-9797(89)90216-6.CrossRefGoogle Scholar
Street, N., (1956) The rheology of kaolinite suspensions Australian Journal of Chemistry 9 467479 10.1071/CH9560467.CrossRefGoogle Scholar
Taylor, R.K., (1985) Cation exchange in clays and mud rocks by methylene blue Journal of Chemical Technology and Biotechnology 35A 195207.CrossRefGoogle Scholar
Tessier, D., (1984) Etude expérimentale de l’organisation des matériaux argileux France Univ. Paris 6 Doctoral thesis.Google Scholar
Tessier, D. Pedro, G., van Olphen, H. and Veniale, F., (1982) Electron microscopy study of Na smectite fabric. Role of layer charge, salt concentration and suction parameter Proceedings of the International Clay Conference, Bologna, Pavia Amsterdam Elsevier 165176.Google Scholar
Van Damme, H., Coussy, O. and Fleureau, J.-M., (2002) L’eau et sa représentation Mécanique des Sols non Saturés Paris Hermès 2368.Google Scholar
Van Olphen, H., (1977) Introduction to Clay Colloid Chemistry 2nd New York Wiley and Sons.Google Scholar