Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T05:11:02.088Z Has data issue: false hasContentIssue false

Effect of Manganese on the Transformation of Ferrihydrite into Goethite and Jacobsite in Alkaline Media

Published online by Cambridge University Press:  02 April 2024

R. M. Cornell
Affiliation:
Institute of Inorganic Chemistry, University of Berne, Freiestrasse 3, CH-3000 Berne 9, Switzerland
R. Giovanoli
Affiliation:
Laboratory of Electron Microscopy, University of Berne, Freiestrasse 3, CH-3000 Berne 9, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the presence of Mn(II), ferrihydrite transforms into Mn-goethite and/or jacobsite. Chemical analysis showed that as much as 15 mole % Mn replaced Fe in the goethite structure. If Mn(III) replaced Mn(II), the formation of jacobsite was suppressed; ferrihydrite transformed into Mn-goethite, and, at high Mn(III) concentrations, a 7-Å phyllomanganate. Low levels of Mn(II) retarded the transformation of ferrihydrite only slightly, whereas in an Mn(III) system the nucleation and growth of Mn-goethite were both hindered. Mn-goethite nucleated in solution, whereas jacobsite appeared to form by interaction of dissolved Mn(II) species with ferrihydrite. Mn suppressed the formation of hematite in these systems; however, Mn-hematite containing as much as 5 mole % Mn was induced to form at pH 8 by adding oxalate to the system. Transmission electron micrographs showed that goethite crystals grown in the presence of Mn were long (≤2 μm) and thin and commonly contained etch pits. The presence of Mn appears to have promoted twinning.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

References

Azaroff, L. V., 1960 Introduction to Solids New York McGraw-Hill.Google Scholar
Cornell, R. M., 1985 Effect of simple sugars on the alkaline transformation of ferrihydrite into goethite and hematite Clays & Clay Minerals 33 219227.CrossRefGoogle Scholar
Cornell, R. M. and Giovanoli, R., 1985 Effect of solution conditions on the proportion and morphology of goethite formed from ferrihydrite Clays & Clay Minerals 33 424432.CrossRefGoogle Scholar
Cornell, R. M., Giovanoli, R. and Schindler, P. W., 1987 Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media Clays & Clay Minerals 35 2128.CrossRefGoogle Scholar
Cornell, R. M. and Schwertmann, U., 1979 Influence of organic anions on the crystallization of ferrihydrite Clays & Clay Minerals 27 402410.CrossRefGoogle Scholar
Davies, S. R. H., 1984 Mn(II) oxidation in the presence of metal oxides .Google Scholar
Feitknecht, W., Oswald, H. R. and Feitknecht-Steinmann, U., 1960 Über die Topochemische einphasige Reduktion von γ-MnO2 Helv. Chim. Acta 43 19471950.CrossRefGoogle Scholar
Fey, M. V. and Dixon, J. B., 1981 Synthesis and properties of poorly crystalline hydrated aluminous goethites Clays & Clay Minerals 29 91100.CrossRefGoogle Scholar
Fischer, W. R. and Schwertmann, U., 1975 The formation of hematite from amorphous iron(III) hydroxide Clays & Clay Minerals 23 3337.CrossRefGoogle Scholar
Giovanoli, R., 1976 Vom Hexaquo-Mangan zum Mangan Sediment. Reaktionsequenzen feinteiliger fester Manganoxidhydroxide Chimia 30 118119.Google Scholar
Giovanoli, R. and Stähli, E., 1970 Oxide und Oxyhydroxide des drei- und vierwertigen Mangans Chimia 24 4052.Google Scholar
Lewis, D. G. and Schwertmann, U., 1979 The influence of Al on iron oxides. Part III. Preparation of Al goethites in M KOH Clay Miner. 14 115126.CrossRefGoogle Scholar
Mann, S., Cornell, R. M. and Schwertmann, U., 1985 The influence of aluminium on iron oxides: XII. High resolution transmission electron microscopic (HRTEM) study of aluminous goethites Clay Miner. 20 255262.CrossRefGoogle Scholar
Parfitt, R. L., Farmer, V. C. and Russell, J. D., 1977 Adsorption on hydrous oxides. I. Oxalate and benzoate on goethite J. Soil Sci. 28 2939.CrossRefGoogle Scholar
Santschi, P. H. and Schindler, P. W., 1974 Complex formation in the ternary systems Ca2+-H4SiO4-H2O and Mg2+-H4SiO4-H2O J. Chem. Soc. Dalton 181184.CrossRefGoogle Scholar
Schulze, D. G., 1984 The influence of aluminum on iron oxides. VIII. Unit-cell dimensions of Al-substituted goethites and estimation of Al from them Clays & Clay Minerals 32 3644.CrossRefGoogle Scholar
Schulze, D. G. and Schwertmann, U., 1984 The influence of aluminium on iron oxides: X. Properties of Al-substituted goethites Clay Miner. 19 521539.CrossRefGoogle Scholar
Schwertmann, U., 1964 Differenzierung der Eisenoxides des Bodens durch Extraktion mit einer Ammoniumoxalat-Lösung Z. Pflanzenernähr. Düng Bodenkd. 105 194202.CrossRefGoogle Scholar
Schwertmann, U., 1985 Effect of pedogenic environments on iron oxide minerals Adv. Soil Sci. 1 171200.CrossRefGoogle Scholar
Schwertmann, U., Fitzpatrick, R. W., Taylor, R. M. and Lewis, D. G., 1979 The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites Clays & Clay Minerals 27 105112.CrossRefGoogle Scholar
Schwertmann, U. and Murad, E., 1983 The effect of pH on the formation of goethite and hematite from ferrihydrite Clays & Clay Minerals 31 277284.CrossRefGoogle Scholar
Shannon, R. D. and Prewitt, C. T., 1969 Effective ionic radii in oxides and fluorides Acta Crystallogr. 925946.CrossRefGoogle Scholar
Stiers, W. and Schwertmann, U., 1985 Evidence for manganese substitution in synthetic goethite Geochim. Cosmochim. Acta 49 19091911.CrossRefGoogle Scholar
Stumm, W. and Morgan, J. J., 1981 Aquatic Chemistry 2nd ed. New York Wiley.Google Scholar
Tamaura, Y., Buduan, P. V. and Katsura, T., 1981 Studies in the oxidation of iron(II) ion during formation of Fe3O4 and α-FeOOH by air oxidation of Fe(OH)2 suspensions J. Chem. Soc. Dalton 18071811.CrossRefGoogle Scholar
Thiry, M. and Sornein, J., 1983 Pétrologie d’une séquence d’altération de carbonate de fer Sci. Geol. Mem. 73 195205.Google Scholar
Van Hook, H. J. and Keith, M. L., 1958 The system Fe3O4-Mn3O4 Amer. Mineral. 43 6983.Google Scholar