Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T00:16:32.217Z Has data issue: false hasContentIssue false

Effect of Ionic Strength and Ion Pair Formation on the Adsorption of Nickel by Kaolinite

Published online by Cambridge University Press:  01 July 2024

Shas V. Mattigod
Affiliation:
Department of Soil and Environmental Sciences, University of California, Riverside, California 92521
A. S. Gibali*
Affiliation:
Department of Soil and Environmental Sciences, University of California, Riverside, California 92521
A. L. Page
Affiliation:
Department of Soil and Environmental Sciences, University of California, Riverside, California 92521
*
1Current address: Alfateh University, Libya.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Adsorption of Ni(II) by Ca- and Na-saturated kaolinites was studied in equilibrating solutions with total Ni concentrations ranging from 118 to 946 μg/liter. Background electrolytes used in these experiments were 0.005,0.01,0.025, and 0.5 M Ca(N03)2,0.002 and 0.005 M CaSO4, 0.01 and 0.1 M NaNO3, and 0.005 and 0.05 M Na2SO4, Ion speciation in equilibrium solutions was calculated by the computer program GEOCHEM. Computed Ni2+ concentrations and activities at equilibrium were correlated with total Ni adsorbed by kaolinite. Increasing ionic strength resulted in decreasing Ni adsorption. Adsorption of Ni was greater from solutions when NO3 was the dominant anion. Based on adsorption data in SO4 medium, the standard free energy of adsorption of Ni2+ ion on kaolinite was computed to be —27 kJ/mole.

Resümee

Resümee

Die Adsorption von Ni2+ durch Ca- und Na-gesättigte Kaolinite wurde in Lösungen nahe dem Gleichgewicht untersucht, die Gesamt-Ni-Konzentrationen im Bereich von 118 bis 946 μ.g/liter hatten. Als Hilfselektrolyte wurden in diesen Experimenten verwendet: 0,005, 0,01, 0,025, und 0,5 M Ca(NO3)2, 0,002 und 0,005 M CaSO4, 0,01 und 0,1 M NaNO3 sowie 0,005 und 0,05 M Na2SO4. Die Verteilung der Ionenarten in den Gleichgewichtslösungen wurde mit dem Computerprogramm GEOCHEM berechnet. Die berechneten Ni2+-Konzentrationen und -Aktivitäten bei Gleichgewicht wurden mit dem Gesamt-Ni, das durch Kaolinit adsorbiert war, korreliert. Eine zunehmende Ionenstärke bewirkt eine abnehmende Ni-Adsorption. Die Ni-Adsorption aus den Lösungen war größer, wenn NO3 das vorherrschende Anion war. Aufgrund der Adsorptionsdaten bei SO42−-Medium wurde die Freie Energie der Ni2+-Adsorption an Kaolinit mit —27 kj/mol berechnet.

Résumé

Résumé

L'adsorption de Ni(II) par des kaolinites saturées de Ca et Na a été étudiée dans des solutions équilibrantes avec des concentrations totales de Ni s’étendant de 118 à 946 μg/litre. Des électrolytes de fond utilisées dans ces expériences étaient 0,005, 0,01, 0,025, et 0,5 M Ca(N03)2; 0,002 et 0,005 M CaSO4; 0,01 et 0,1 M NaNO3; et 0,005 et 0,05 M Na2SO4. La spéciation d'ions dans les solutions d’équilibre a été calculée par le programme d'ordinateur GEOCHEM. Les concentrations et activités de Ni2+ calculées à l’équilibre ont été apparentées à Ni total adsorbé par la kaolinite. La force ionique croissante a résulté en une adsorption décroissante de Ni. Lorsque NO3 était l'anion dominant dans les solutions, l'adsorption de Ni était la plus élevée. En se basant sur les données d'adsorption dans un milieu SO4, on a calculé que l’énergie libre standard d'adsorption de l'ion Ni2+ sur la kaolinite était —27 kJ/mole.

Резюме

Резюме

Изучалась адсорбция Ni(II) каолинитами, насыщенными Са и Na, в равновесных растворах с общими концентрациями Ni, изменяющимися от 118 до 946 /иг/литр. Дополнительными электролитами, используемыми в этих экспериментах были 0,005, 0,01, 0,025; и 0,5 М Са(NO3)2; 0,002 и 0,005 М СаSO4; 0,01 и 0,1 М NaNO3; и 0,005 и 0,05 М NaSO4. Образование ионов в равновесных растворах определялось с помощью компьютерной программы ГЕОХИМ. Подсчитанные концентрации и активности Ni2+ при равновесии коррелировались с общим количеством Ni, адсорбированным каолинитом. Увеличивающаяся ионная сила вызвала уменьшение адсорбции Ni. Адсорбция Ni из растворов была больше, когда NO3 бул главным анионом. На основании данных адсорбции в среде SO4, была вычислена стандартная свободная энергия адсорбции иона Ni2+ каолинитом, равная −27 кДж/моль.

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

References

Baes, C. F. Jr. and Mesmer, R. E. (1976) The Hydrolysis of Cations: John Wiley & Sons, New York, 489 pp.Google Scholar
Bell, R. P. and George, J. H. B. (1953) The complete dissociation of some thallous and calcium salts at different temperatures: Trans. Faraday Soc. 49, 619627.CrossRefGoogle Scholar
Bradford, G. R., Bair, F. L., and Hunsaker, V. (1971) Trace and major element contents of soil saturation extracts: Soil Sci. 112, 225230.CrossRefGoogle Scholar
Counts, M. E. (1975) Adsorption of heavy metal ions on mineral surfaces. Ph.D. thesis, Virginia Polytechnic & State University, Blacksburg, Virginia, 201 pp.Google Scholar
Davies, C. W. (1927) The extent of dissociation of salts in water: Trans. Faraday Soc. 23, 351356.Google Scholar
Davies, C. W. (1962) Ion Association: Butterworths, London, 189 pp.Google Scholar
Dowdy, R. H., Larson, R. E., and Epstein, E. (1976) Sewage sludge and effluent use in agriculture: in Land Application of Waste Materials, Soil Con. Soc. Amer., Ankeny, Iowa, 138153.Google Scholar
Dunsmore, H. S. and Nancollas, G. H. (1964) Dissociation of the bisulfate ion: J. Phys. Chem. 68, 15791581.CrossRefGoogle Scholar
Elgabaly, M. M. and Jenny, H. (1943) Cation and anion interchange with zinc montmorillonite clays: J. Phys. Chem. 47, 399408.CrossRefGoogle Scholar
Farrah, H. and Pickering, W. F. (1976) The sorption of copper species by clays. I. Kaolinite: Aust. J. Chem. 29, 11671176.CrossRefGoogle Scholar
Fedorov, V. A., Shmyd'ko, I. I., Robov, A. M., Simaeva, L. S., Kukhtina, V. A., and Mironov, V. E. (1973) Nitrate complexes of cobalt (II) and nickel (II): Russ. J. Inorg. Chem. 18, 673675.Google Scholar
Fedorov, V. A., Robov, A. M., Shmyd'ko, I. I., Vorontseva, N. A., and Mironov, V. E. (1974) Interaction of alkaline earth element ions with nitrate ions in aqueous solutions: Russ. J. Inorg. Chem. 19, 950953.Google Scholar
Fisher, F. H. and Fox, A. P. (1975) NaSO4 ion pairs in aqueous solutions at pressures up to 2000 atm: J. Solution Chem. 4, 225226.CrossRefGoogle Scholar
Giles, C. H., MacEwan, T. H., Nakhwa, S. N., and Smith, D. (1960) Studies on adsorption: Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids: J. Chem. Soc., 39733993.Google Scholar
Harned, H. S. and Davis, R. (1943) The dissociation constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50°C: J. Amer. Chem. Soc. 65, 20302037.CrossRefGoogle Scholar
Helgeson, H. C. (1967) Thermodynamics of complex dissociation in aqueous solution at elevated temperatures: Jour. Phys. Chem. 71, 31213136.CrossRefGoogle Scholar
Jacobson, R. L. and Langmuir, D. (1974) Dissociation constants of calcite and CaHCO3+ from 0° to 50°C: Geochim. Cosmochim. Acta 38, 301318.CrossRefGoogle Scholar
Kabata-Pendias, A. (1968) The sorption of trace elements by soil forming minerals: Rocz. Glebozn. 19, 5572.Google Scholar
Koppelman, M. H. and Dillard, J. G. (1977) A study of the adsorption of Ni(II) and Cu(II) by clay minerals: Clays & Clay Minerals 25, 457462.CrossRefGoogle Scholar
Lafon, G. M. and Truesdell, A. H. (1971) Temperature dependence of sodium sulfate complexing in aqueous solutions: Trans. Amer. Geophys. Union 52, 362 (abstract).Google Scholar
Mattigod, S. V. and Sposito, G. (1977) Estimated association constants for some complexes of trace metals with inorganic ligands: Soil Sci. Soc. Amer. J. 41, 10921097.CrossRefGoogle Scholar
McLean, G. W. (1966) Retention and release of Ni by clays and soils: Ph.D. thesis, University of California, Riverside, 93 pp.Google Scholar
Nair, V. S. K. and Nancollas, G. H. (1959) Thermodynamics of ion association: Part VI. Some transition metal sulfates: J. Chem. Soc., 39343939.Google Scholar
Nakayama, F. S. (1970) Sodium bicarbonate and carbonate ion pairs and their relation to the estimation of the first and second dissociation constants of carbonic acid: J. Phys. Chem. 74, 27262728.CrossRefGoogle Scholar
Nakayama, F. S. (1971) Thermodynamic functions for the dissociation of NaHCO30, NaCO3, H2CO30, and HCO3: J. Inorg. Nucl. Chem. 33, 12871291.CrossRefGoogle Scholar
Nakayama, F. S. and Rasnick, B. A. (1967) Calcium electrode method for measuring dissociation and solubility of calcium sulfate dihydrate: Anal. Chem. 39, 10221023.CrossRefGoogle Scholar
Olofsson, G. and Hepler, L. G. (1975) Thermodynamics of ionization of water over wide ranges of temperature and pressure: J. Solution Chem. 4, 127143.CrossRefGoogle Scholar
Page, A. L. (1974) Fate and effects of trace elements in sewage sludge when applied to agricultural lands. A literature review study: Rep. Office of Res. and Dev., USEPA, Cincinnati, Ohio, 98 pp.Google Scholar
Papanicolaou, E. P. and Nobeli, C. (1977) A contribution to the study of ZnCl+ adsorption by soils: Z. Pflanzenernaehr. Bodenkd. 140, 543548.CrossRefGoogle Scholar
Phelps, P. L. and Anspaugh, L. R. (1976) Imperial Valley environmental project: Progress Rpt. Lawrence Livermore Lab. Univ. Calif., Livermore, 214 pp.CrossRefGoogle Scholar
Pittwell, L. R. (1967) A theory of secondary ore body formation based on a study of coordination effects associated with Ethiopian and related rivers, especially those of carbonate, nitrite and halide ions: Report submitted to Haile Selassie I. Univ., Addis Ababa, 140 pp.Google Scholar
Reardon, E. J. and Langmuir, D. (1974) Thermodynamic properties of ion pairs MgCO30 and CaCO30 from 10° to 50°C: EOS Trans. AGU 54, 260.Google Scholar
Sposito, G. and Mattigod, S. V. (1977) On the chemical foundation of the sodium adsorption ratio: Soil Sci. Soc. Amer. J. 41, 323329.CrossRefGoogle Scholar
Sprague, S. and Slavin, W. (1964) Determination of very small amounts of copper and lead in KCl by organic extraction and atomic adsorption spectophotometry: At. Absorpt. Newsl. 3, 37.Google Scholar
Walsh, L. M., Sumner, M. E., and Corey, R. B. (1976) Consideration of soils for accepting plant nutrients and potentially toxic nonessential elements: in Land Application of Waste Materials, Soil Con. Soc. Amer., Ankeny, Iowa, 2247.Google Scholar