Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T18:56:48.502Z Has data issue: false hasContentIssue false

Effect of Heating on Microcrystalline Synthetic Goethite

Published online by Cambridge University Press:  02 April 2024

Christian J. W. Koch
Affiliation:
Chemistry Department, Royal Veterinary and Agricultural University, DK-1871 Copenhagen V, Denmark
Morten Bo Madsen
Affiliation:
Laboratory of Applied Physics II, Technical University of Denmark, DK-2800 Lyngby, Denmark
Steen Mørup
Affiliation:
Laboratory of Applied Physics II, Technical University of Denmark, DK-2800 Lyngby, Denmark
Gunnar Christiansen
Affiliation:
Laboratory of Applied Physics III, Technical University of Denmark, DK-2800 Lyngby, Denmark
Leif Gerward
Affiliation:
Laboratory of Applied Physics III, Technical University of Denmark, DK-2800 Lyngby, Denmark
Jørgen Villadsen
Affiliation:
Haldor Topsøe Research Laboratories, DK-2800 Lyngby, Denmark
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of heating synthetic microcrystalline goethite at 60°, 80°, and 105°C was studied by X-ray powder diffraction, electron microscopy, weight-loss measurements, and Mössbauer spectroscopy. Heating led to no detectable changes in the unit-cell parameters or crystallite size (210, 150, and 170 Å in the [020], [110], and [120] directions, respectively), however, some of the X-ray diffraction lines were broadened due to an increase in microstrain in these crystallographic directions. The superferromagnetic transition temperature increased from 43° to 46°, 53°, and 54°C after heating to 60°, 80°, and 105°C, respectively, showing that the desorption of water from the surfaces led to an enhanced magnetic coupling among the crystallites.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

References

Delhez, R., de Keijser, Th H and Mittemeijer, E. J., 1982 Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis Fresenius Z. Anal. Chem. 312 116.CrossRefGoogle Scholar
Fey, M. V. and Dixon, J. B., 1981 Synthesis and properties of poorly crystalline hydrated aluminous goethites Clays & Clay Minerals 29 91100.CrossRefGoogle Scholar
Gómez-Villacieros, R., Hernán, L., Morales, J. and Tirado, J. L., 1984 Textural evolution of synthetic 7-FeOOH during thermal treatment by differential scanning calorimetry J. Colloid Interface Sci. 101 392400.CrossRefGoogle Scholar
Harrison, R. K., Aitkenhead, N., Young, B. R. and Dagger, P. F., 1975 Goethite from Hindlow, Derbyshire Bull. Geol. Surv. Great Britain 52 5154.Google Scholar
de Keijser, Th H, Langford, J. I., Mittemeijer, E. J. and Vogels, A. B. P., 1982 Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening J. Appl. Cryst. 15 308314.CrossRefGoogle Scholar
Klug, H. P. and Alexander, L. E., 1974 X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials .Google Scholar
Langford, J. I., 1978 A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function J. Appl. Crystallogr. 11 1014.CrossRefGoogle Scholar
Murad, E. and Schwertmann, U., 1983 The influence of aluminium substitution and crystallinity on the Mössbauer spectra of goethite Clay Miner. 18 301312.CrossRefGoogle Scholar
Mørup, S., 1983 Magnetic hyperfine splitting in Mössbauer spectra of microcrystals J. Magn. Magn. Mat. 37 3950.CrossRefGoogle Scholar
Mørup, S., Madsen, M. B., Franck, J., Villadsen, J. and Koch, C.J.W., 1983 A new interpretation of Mössbauer spectra of microcrystalline goethite: “super-ferromagnetism” or “super-spin-glass” behaviour? J. Magn. Magn. Mat. 40 163174.CrossRefGoogle Scholar
Mørup, S., Topsøe, H. and Clausen, B. S., 1982 Magnetic properties of microcrystals studied by Mössbauer spectroscopy Phys. Scr. 25 713719.CrossRefGoogle Scholar
Néel, L., 1961 Superparamagnétisme des grains très fins antiferromagnétiques Comp. Rend. Acad. Sci. Paris 252 40754080.Google Scholar
Rancourt, D. G. and Daniels, J. M., 1984 Influence of unequal magnetization direction probabilities on the Mössbauer spectra of superparamagnetic particles Phys. Rev. B 29 24102414.CrossRefGoogle Scholar
Reynolds, R. C., 1968 The effect of particle size on apparent lattice spacings Acta Crystallogr. A24 319320.CrossRefGoogle Scholar
Sampson, C. F., 1969 The lattice parameters of natural single crystal and synthetically produced goethite (α-FeOOH) Acta Crystallogr. B25 16831685.CrossRefGoogle Scholar
Schulze, D. G., 1984 The influence of aluminum on iron oxides. VIII. Unit-cell dimensions of Al-substituted goethites and estimation of Al from them Clays & Clay Minerals 32 3644.CrossRefGoogle Scholar
Schulze, D. G. and Schwertmann, U., 1984 The influence of aluminium on iron oxides: X. Properties of Al-substituted goethites Clay Miner. 19 521539.CrossRefGoogle Scholar
Trunz, V., 1976 The influence of crystallite size on the apparent basal spacings of kaolinite Clays & Clay Minerals 24 8487.CrossRefGoogle Scholar
Williamson, G. K. and Hall, W. H., 1953 X-ray line broadening from filed aluminium and wolfram Acta Met. 1 2231.CrossRefGoogle Scholar
Wivel, C. and Mørup, S., 1981 Improved computational procedure for evaluation of overlapping hyperfine parameter distributions in Mössbauer spectra J. Phys. E: Sci. Instrum. 14 605610.CrossRefGoogle Scholar
van der Woude, F. and Dekker, A. J., 1966 Mössbauer effect in α-FeOOH Phys. Stat. Sol. 13 181193.CrossRefGoogle Scholar