Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T17:02:20.709Z Has data issue: false hasContentIssue false

The Effect of Antimonate, Arsenate, and Phosphate on the Transformation of Ferrihydrite to Goethite, Hematite, Feroxyhyte, and Tripuhyite

Published online by Cambridge University Press:  01 January 2024

Ralph Michael Bolanz*
Affiliation:
Institute of Geoscience, Friedrich-Schiller-University, Jena, Germany
Ulrich Bläss
Affiliation:
Institute of Geoscience, Friedrich-Schiller-University, Jena, Germany
Sonia Ackermann
Affiliation:
Institute of Geoscience, Friedrich-Schiller-University, Jena, Germany
Valerian Ciobotă
Affiliation:
Institute of Physical Chemistry, Friedrich-Schiller-University, Jena, Germany
Petra Rösch
Affiliation:
Institute of Photonic Technology, Jena, Germany
Nicolae Tarcea
Affiliation:
Institute of Photonic Technology, Jena, Germany
Jürgen Popp
Affiliation:
Institute of Physical Chemistry, Friedrich-Schiller-University, Jena, Germany Institute of Photonic Technology, Jena, Germany
Juraj Majzlan
Affiliation:
Institute of Geoscience, Friedrich-Schiller-University, Jena, Germany
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Iron oxides, typical constituents of many soils, represent a natural immobilization mechanism for toxic elements. Most iron oxides are formed during the transformation of poorly crystalline ferrihydrite to more crystalline iron phases. The present study examined the impact of well known contaminants, such as P(V), As(V), and Sb(V), on the ferrihydrite transformation and investigated the transformation products with a set of bulk and nano-resolution methods. Irrespective of the pH, P(V) and As(V) favor the formation of hematite (α-Fe2O3) over goethite (α-FeOOH) and retard these transformations at high concentrations. Sb(V), on the other hand, favors the formation of goethite, feroxyhyte (d’-FeOOH), and tripuhyite (FeSbO4) depending on pH and Sb(V) concentration. The elemental composition of the transformation products analyzed by inductively coupled plasma optical emission spectroscopy show high loadings of Sb(V) with molar Sb:Fe ratios of 0.12, whereas the molar P:Fe and As:Fe ratios do not exceed 0.03 and 0.06, respectively. The structural similarity of feroxyhyte and hematite was resolved by detailed electron diffraction studies, and feroxyhyte was positively identified in a number of the samples examined. These results indicate that, compared to P(V) and As(V), Sb(V) can be incorporated into the structure of certain iron oxides through Fe(III)-Sb(V) substitution, coupled with other substitutions. However, the outcome of the ferrihydrite transformation (hematite, goethite, feroxyhyte, or tripuhyite) depends on the Sb(V) concentration, pH, and temperature.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2013

References

Ackermann, S. Gieré, R. Newville, M. and Majzlan, J., 2009 Antimony sinks in the weathering crust of bullets from Swiss shooting ranges Science of the Total Environment 407 16691682.CrossRefGoogle Scholar
A´lvarez-Benedí, J. Bolado, S. Cancillo, I. Calvo, C. and García-Sinovas, D., 2005 Adsorption-desorption of arsenate in three Spanish soils Vadose Zone Journal 4 282290.CrossRefGoogle Scholar
Ambe, S., 1987 Adsorption kinetics of antimony(V) ions onto a-Fe2O3 surfaces from an aqueous solution Langmuir 3 489493.CrossRefGoogle Scholar
Arai, Y. and Sparks, D.L., 2001 ATR-FTIR Spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface Journal of Colloid and Interface Science 241 317326.CrossRefGoogle Scholar
Atkinson, R.J. Quirk, J.P. and Posner, A.M., 1972 Kinetics of isotropic-exchange of phosphate at alpha-FeOOH-aqu-eous solution interface Journal of Inorganic and Nuclear Chemistry 34 22012211.CrossRefGoogle Scholar
Atkinson, R.J. Posner, A.M. and Quirk, J.P., 1967 Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface The Journal of Physical Chemistry 71 3 550558.CrossRefGoogle Scholar
Barron, V. Herruzo, M. and Torrent, J., 1988 Phosphate adsorption by aluminous hematite of different shapes Soil Science Society of America Journal 52 3 647651.CrossRefGoogle Scholar
Barrow, N.J. Madrid, L. and Posner, A.M., 1981 A partial model for the rate of adsorption and desorption of phosphate by goethite Journal of Soil Science 3 399407.CrossRefGoogle Scholar
Berlepsch, P. Armbruster, T. and Brugger, J., 2003 Tripuhyite, FeSbO4, revisited Mineralogical Magazine 67 3146.CrossRefGoogle Scholar
Blesa, M.A. and Matijevic, E., 1989 Phase-transformations of iron-oxides, oxyhydroxides, and hydrous oxides in aqueous-media Advances in Colloid and Interface Science 29 173221.CrossRefGoogle Scholar
Borggaard, O.K., 1983 Effect of surface-area and mineralogy of iron-oxides on their surface-charge and anion-adsorption properties Clays and Clay Minerals 31 230232.CrossRefGoogle Scholar
Borggaard, O.K. Raben-Lange, B. Gimsing, A.L. and Strobel, B.W., 2005 Influence of humic substances on phosphate adsorption by aluminium and iron oxides Geoderma 127 270279.CrossRefGoogle Scholar
Brintzinger, H., 1948 Die Antimonat-, Antimonit-, Germanat-und Aluminat-Ioden im gelössten Zustand Zeitschrift für Anorganische und Allgemeine Chemie 256 98102.CrossRefGoogle Scholar
Brunauer, S. Emmett, P.H. and Teller, E., 1938 Adsorption of gases in multimolecular layers Journal of the American Chemical Society 60 308319.CrossRefGoogle Scholar
Carlson, L. and Schwertmann, U., 1980 Natural occurrence of feroxyhyte (d’-FeOOH) Clays and Clay Minerals 28 272280.CrossRefGoogle Scholar
Ciobotă, V. Salama, W. Tarcea, N. Rösch, P. Aref, M.E. Gaupp, R. and Popp, J., 2012 Identification of minerals and organic materials in Middle Eocene ironstones from the Bahariya Depression in the Western Desert of Egypt by means of micro-Raman spectroscopy Journal of Raman Spectroscopy 43 405410.CrossRefGoogle Scholar
Colombo, C. Barro´n, V. and Torrent, J., 1994 Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites Geochimica et Cosmochimica Acta 58 12611269.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., 2003.The Iron Oxides, Properties, Reactions, Occurrences, and UsesCrossRefGoogle Scholar
Cornell, R.M. Giovanoli, R. and Schindler, P.W., 1987 Effect of silicate species on the transformation of ferrihy-drite into goethite and hematite in alkaline media Clays and Clay Minerals 35 2128.CrossRefGoogle Scholar
Cristiano, E. Hu, Y.-J. Siegfried, M. Kaplan, D. and andNitsche, H., 2011 A comparison of point of zero charge measurements methodology Clays and Clay Minerals 59 107115.CrossRefGoogle Scholar
Cudennec, Y. and Lecerf, A., 2006 The transformation of ferrihydrite into goethite or hematite, revisited Journal of Solid State Chemistry 179 716722.CrossRefGoogle Scholar
Das, S. Hendry, J. and Essilfie-Dughan, J., 2011 Effects of adsorbed arsenate on the rate of transformation of 2-line ferrihydrite at pH 10 Environmental Science & Technology 45 55575563.CrossRefGoogle ScholarPubMed
Das, S. Hendry, J. and Essilfie-Dughan, J., 2011 Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature Environmental Science & Technology 45 268275.CrossRefGoogle ScholarPubMed
Diemar, G.A. Filella, M. Leverett, P. and Williams, P.A., 2009 Dispersion of antimony from oxidizing ore deposits Pure and Applied Chemistry 81 15471553.CrossRefGoogle Scholar
Dörfer, T. Schumacher, W. Tarcea, N. Schmitt, M. and Popp, J., 2010 Quantitative mineral analysis using Raman spectroscopy and chemometric techniques Journal of Raman Spectroscopy 41 684689.CrossRefGoogle Scholar
Downs, R. T. and Hall-Wallace, M., 2003 “The American Mineralogist Crystal Structure Database” American Mineralogist 88 247250.Google Scholar
Drits, V.A. Sakharov, B.A. and Manceau, A., 1993 Structure of feroxyhyte as determined by simulation of X-ray diffraction curves Clay Minerals 28 209222.CrossRefGoogle Scholar
Filella, M. Belzile, N. and Chen, Y.-W., 2002 Antimony in the environment: a review focused on natural waters-II. Relevant solution chemistry Earth-Science Reviews 59 265285.CrossRefGoogle Scholar
Fischer, W.R. and Schwertmann, U., 1975 The formation of hematite from amorphous iron(III) hydroxide Clays and Clay Minerals 23 3337.CrossRefGoogle Scholar
Gaboriaud, F. and Ehrhardt, J.-J., 2003 Effects of different crystal faces on the surface charge of colloidal goethite (a-FeOOH) particles: an experimental and modeling study Geochimica et Cosmochimica Acta 67 967983.CrossRefGoogle Scholar
Georgescu, D. Baia, L. Ersen, O. Baia, M. and Simon, S., 2012 Experimental assessment of the phonon confinement in TiO2 anatase nanocrystallites by Raman spectroscopy Journal of Raman Spectroscopy 43 876883.CrossRefGoogle Scholar
Gimsing, A.L. and Borggaard, O.K., 2007 Phosphate and glyphosate adsorption by hematite and ferrihydrite and comparison with other variable-charge minerals Clays and Clay Minerals 55 108114.CrossRefGoogle Scholar
Grazulis, S. Chateigner, D. Downs, R. T. Yokochi, A. T. Quiros, M. Lutterotti, L. Manakova, E. Butkus, J. Moeck, P. and Le Bail, A., 2009 “Crystallography Open Database-an open-access collection of crystal structures” Journal of Applied Crystallography 42 726729.CrossRefGoogle Scholar
Grazulis, S. Daskevic, A. Merkys, A. Chateigner, D. Lutterotti, L. Quiros, M. Serebryanaya, N.R. Moeck, P. Downs, R.T. and LeBail, A., 2012 “Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration” Nucleic Acids Research 40 D420D427.CrossRefGoogle Scholar
Guan, X. Dong, H. Ma, J. and Jiang, L., 2009 Removal of arsenic from water: Effects of competing anions on As(III) removal in KMnO4-Fe(II) process Water Research 43 38913899.CrossRefGoogle ScholarPubMed
Hanesch, M., 2009 Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies Geophysical Journal International, 1 77 941948.CrossRefGoogle Scholar
Hansen, H.C.B. Raben-Lange, R. Raulund-Rasmussen, K. and Borggaard, O.K., 1994 Monosilicate adsorption by ferrihydrite and goethite at pH 3–6 Soil Science 158 4046.CrossRefGoogle Scholar
He, Q.H. Leppard, G.G. Paige, C.R. and Snodgrass, W.J., 1996 Transmission electron microscopy of a phosphate effect on the colloid structure of iron hydroxide Water Research 30 13451352.CrossRefGoogle Scholar
Jambor, J.L. and Dutrizac, J.E., 1998 Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide Chemical Review 98 25492585.CrossRefGoogle Scholar
Johnston, J.H. and Lewis, D.G., 1983 A detailed study of the transformation of ferrihydrite to hematite in an aqueous medium at 92ºC Geochimica et Cosmochimica Acta 47 18231831.CrossRefGoogle Scholar
Larsen, O. and Postma, D., 2001 Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite Geochimica et Cosmochimica Acta 65 13671379.CrossRefGoogle Scholar
Leuz, A.-K. Mönch, H. and Johnson, C.A., 2006 Sorption of Sb(III) and Sb(V) to goethite: Influence on Sb(III) oxidation and mobilization Environmental Science & Technology 40 72777282.CrossRefGoogle ScholarPubMed
Loan, M. Parkinson, G.M. and Richmond, W.R., 2005 The effect of zinc sulfide on phase transformations of ferrihydrite American Mineralogist 90 258261.CrossRefGoogle Scholar
Majzlan, J., 2011 Thermodynamic stabilization of hydrous ferric oxide by adsorption of phosphate and arsenate Environmental Science & Technology 45 47264732.CrossRefGoogle ScholarPubMed
Majzlan, J. Lalinska, B. Chovan, M. Bläss, U. Brecht, B. Göttlicher, J. Steininger, R. Hug, K. Ziegler, S. and Gescher, J., 2011 A mineralogical, geochemical, and microbiogical assessment of the antimony- and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia American Mineralogist 96 113.CrossRefGoogle Scholar
Mamindy-Pajany, Y. Hurel, C. Marmier, N. and Roméo, M., 2011 Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility Desalination 281 9399.CrossRefGoogle Scholar
Manceau, A. and Drits, V.A., 1993 Local-structure of ferrihydrite and feroxyhyte by EXAFS spectroscopy Clay Minerals 28 165184.CrossRefGoogle Scholar
Martinelli, A. Ferretti, M. Basso, R. Cabella, R. Lucchetti, G. Marescotti, P. and Buscaglia, V., 2004 Solid state miscibility in the pseudo-binary TiO2-(FeSb)O4 system at 1373 K Zeitschrift für Kristallographie 219 487493.CrossRefGoogle Scholar
Michel, M.F. Ehm, L. Antao, S.M. Lee, P.L. Chupas, P.J. Liu, G. Strongin, D.R. Schoonen, M.A.A. Phillips, B.L. and Parise, J.B., 2007 The structure of ferrihydrite, a nanocrystalline material Science 316 5832 17261729.CrossRefGoogle ScholarPubMed
Mitsunobu, S. Takahashi, Y. Utsunomiya, S. Marcus, M.A. Terada, Y. Iwamura, T. and Sakata, M., 2011 Identification and characterization of nanosized tripuhyite in soil near Sb mine tailings American Mineralogist 7 11711181.CrossRefGoogle Scholar
Nagano, T. Nakashima, S. Nakayama, S. and Senoo, M., 1994 The use of color to quantify the effect of pH and temperature on the crystallization kinetics of goethite under highly alkaline conditions Clays and Clay Minerals 42 226234.CrossRefGoogle Scholar
Paige, C.R. Snodgrass, W.J. Nicholson, R.V. and Scharer, J.M., 1996 The crystallization of arsenate-contaminated iron hydroxide solids at high pH Water Environment Research 68 981987.CrossRefGoogle Scholar
Paige, C.R. Snodgrass, W.J. Nicholson, R.V. Scharer, J.M. and He, Q.H., 1997 The effect of phosphate on the transformation of ferrihydrite into crystalline products in alkaline media Water, Air, and Soil Pollution 97 397412.CrossRefGoogle Scholar
Parida, K.M. Gorai, B. Das, N.N. and Rao, S. B., 1997 Studies on ferric oxide hydroxides. III. Adsorption of selenite (SeO32−) on different forms of iron oxyhydroxides Journal of Colloid and Interface Science 185 355362.CrossRefGoogle Scholar
Parise, J.B. Marshall, W.G. Smith, R.I. Lutz, H.D. and Moller, H., 2000 The nuclear and magnetic structure of “white rust”-Fe(OH0.86D0.14)2 American Mineralogist 85 189193.CrossRefGoogle Scholar
Patrat, G. De Bergevin, F. Pernet, M. and Joubert, J., 1983 Structure locale de delta-Fe O O H Acta Crystallographica B 39 165170.CrossRefGoogle Scholar
Pernet, M. Joubert, J.C. and Berthet-Colominas, C., 1975 Etude par diffraction neutronique de la forme haute pression de FeOOH Solid State Communications 17 15051510.CrossRefGoogle Scholar
Pitman, A.L. Pourbaix, M. and De Zoubov, N., 1957 Potential-pH diagram of the antimony-water system. Its applications to properties of the metal, its compounds, its corrosion, and antimony electrodes Journal of the Electrochemical Society 104 594600.CrossRefGoogle Scholar
Ryden, J.C. McLaughlin, J.R. and Syers, J.K., 1977 Mechanisms of phosphate sorption by soil and hydrous ferric oxide gel Journal of Soil Science 28 7292.CrossRefGoogle Scholar
Salazar-Camacho, C. and Villalobos, M., 2010 Goethite surface reactivity: III. Unifying arsenate adsorption behavior through a variable crystal face-site density model Geochimica et Cosmochimica Acta 74 22572280.CrossRefGoogle Scholar
Schwertmann, U. and Cornell, R.M., 2000 Iron Oxides in the Laboratory: Preparation and Characterization.CrossRefGoogle Scholar
Schwertmann, U. and Fischer, W.R., 1966 Zur Bildung von a-FeOOH und a-Fe2O3 aus amorphem Eisen(llI)-hydroxid III Zeitschrift für Anorganische und Allgemeine Chemie 346 137142.CrossRefGoogle Scholar
Schwertmann, U. and Murad, E., 1983 Effect of pH on the formation of goethite and hematite from ferrihydrite Clays and Clay Minerals 31 277284.CrossRefGoogle Scholar
Shannon, R.D., 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallographica A 32 751767.CrossRefGoogle Scholar
Shaw, S. Pepper, S.E. Bryan, N.D. and Livens, F.R., 2005 The kinetics and mechanisms of goethite and hematite crystallization under alkaline conditions, and in the presence of phosphate American Mineralogist 90 18521860.CrossRefGoogle Scholar
Suzuki, A., 2010 High-pressure X-ray diffraction study of e-FeOOH Physics and Chemistry of Minerals 37 153157.CrossRefGoogle Scholar
Tighe, M. Lockwood, P. and Wilson, S., 2005 Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid Journal of Environmental Monitoring 7 11771185.CrossRefGoogle ScholarPubMed
Torrent, J. Barro´n, V. and Schwertmann, U., 1990 Phosphate adsorption and desorption by goethites differing in crystal morphology Soil Science Society of America Journal 54 10071012.CrossRefGoogle Scholar
Torrent, J. Schwertmann, U. and Barro´n, V., 1994 Phosphate sorption by natural hematites European Journal of Soil Science 45 4551.CrossRefGoogle Scholar
Wainipee, W. Weiss, D.J. Sephton, M.A. Coles, B.J. Unsworth, C. and Court, R., 2010 The effect of cruide oil on arsenate adsorption on goethite Water Research 44 56735683.CrossRefGoogle ScholarPubMed
Walsch, J. and Dultz, S., 2010 Effects of pH, Ca- and SO4-concentration on surface charge and colloidal stability of goethite and hematite-consequences for the adsorption of anionic organic substances Clay Minerals 45 113.CrossRefGoogle Scholar
Wojdyr, M., 2010 Fityk: a general-purpose peak fitting program Journal of Applied Crystallography 43 11261128.CrossRefGoogle Scholar
Zhu, J. Pigna, M. Cozzolino, V. Caporale, A.G. and Violante, A., 2011 Sorption of arsenite and arsenate on ferrihydrite: Effect of organic and inorganic ligands Journal of Hazardous Materials 189 564571.CrossRefGoogle Scholar