Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-15T21:30:04.379Z Has data issue: false hasContentIssue false

The Effect of Al on Fe Oxides. XIX. Formation of Al-Substituted Hematite from Ferrihydrite at 25°C and pH 4 to 7

Published online by Cambridge University Press:  28 February 2024

Udo Schwertmann
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
Josef Friedl
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
Helge Stanjek
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
Darrell G. Schulze
Affiliation:
Agronomy Department, Purdue University, 1150 Lilly Hall, West Lafayette, Indiana 47907-1150, USA

Abstract

Iron oxides in surface environments generally form at temperatures of 25 ± 10°C, but synthesis experiments are usually done at higher temperatures to increase the rate of crystallization. To more closely simulate natural environments, the transformation of 2-line ferrihydrite to hematite and goethite at 25°C in the presence of different Al concentrations and at pH values from 4 to 7 was studied in a long-term (16–20 y) experiment. Aluminum affects the hydrolysis and charging behavior of 2-line ferrihydrite and retards crystallization. Al also promotes the formation of hematite over goethite and leads to multidomainic discoidal and framboidal crystals instead of rhombohedral crystals. The strong hematite-promoting effect of Al appears to be the result of a lower solubility of the Al-containing ferrihydrite precursor relative to pure ferrihydrite. Hematite incorporates Al into its structure, as is shown by a decrease in the a and c-cell lengths and a decrease in magnetic hyperfine fields (Mössbauer spectroscopy). With hematite formed at low-temperature, these decreases were, however, smaller for the cell length and greater for the magnetic field than for hematite produced at higher temperatures. Both phenomena are removed by heating the hematite at 200°C. They are attributed to structural OH and/or structural defects. The relative content of Al in the structure is lower for hematite formed at 25°C than for hematites synthesized at higher temperatures (80 and 500°C). The maximum possible substitution of one sixth of the Fe positions was not achieved, similar to soil hematites. These results show that properties of widely distributed soil Al-containing hematites can reflect formation environment.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, R.R. and Gilkes, R.J., 1987 Variation in the properties of iron oxides within individual specimens of lateritic duricrust Australian Journal of Soil Research 25 287302 10.1071/SR9870287.CrossRefGoogle Scholar
Anand, R.R. and Gilkes, R.J., 1987 Iron oxides in lateritic soils Journal of Soil Science 38 607622 10.1111/j.1365-2389.1987.tb02158.x.CrossRefGoogle Scholar
Atkinson, R.J. Posner, A.M. and Quirk, J.P., 1968 Crystal nucleation in Fe(III) solutions and hydroxide gels Journal of Inorganic and Nuclear Chemistry 30 23712381 10.1016/0022-1902(68)80247-7.CrossRefGoogle Scholar
Barron, V. Rendon, J.L. Torrent, J. and Serna, C.J., 1984 Relation of infrared, crystallochemical, and morphological properties of Al-substituted hematites Clays and Clay Minerals 32 475479 10.1346/CCMN.1984.0320605.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., 1996 The Iron Oxides Weinheim VCH.Google Scholar
de Brito Galvao, T.C. and Schulze, D.G., 1996 Mineralogical properties of a collapsible lateritic soil from Minas Gerais, Brazil Soil Science Society of America Journal 60 19691978 10.2136/sssaj1996.03615995006000060050x.CrossRefGoogle Scholar
De Grave, E. Bowen, L.H. and Weed, S.B., 1982 Mossbauer study of aluminum-substituted hematites Journal of Magnetic Materials 27 98108 10.1016/0304-8853(82)90288-8.CrossRefGoogle Scholar
De Grave, E. Bowen, L.H. Vochten, R. and Vandenberghe, R.E., 1988 The effect of crystallinity and Al substitution on the magnetic structure and Morin transition in hematite Journal of Magnetic Materials 72 141151 10.1016/0304-8853(88)90182-5.CrossRefGoogle Scholar
Fey, M.V. and Dixon, J.B., 1981 Synthesis and properties of poorly crystalline hydrated aluminous goethites Clays and Clay Minerals 29 91100 10.1346/CCMN.1981.0290202.CrossRefGoogle Scholar
Fischer, W.R. and Schwertmann, U., 1975 The formation of hematite from amorphous iron(III)-hydroxide Clays and Clay Minerals 23 3337 10.1346/CCMN.1975.0230105.CrossRefGoogle Scholar
Fontes, M.P.F. and Weed, S.B., 1991 Iron oxides in selected Brazilian oxisols: I. Mineralogy Soil Science Society of America Journal 55 11431149 10.2136/sssaj1991.03615995005500040040x.CrossRefGoogle Scholar
Friedl, J. and Schwertmann, U., 1996 Aluminium influence on iron oxides: XVIII. The effect of Al substution and crystal size on magnetic hyperfine fields of natural goethites Clay Minerals 31 455464 10.1180/claymin.1996.031.4.02.CrossRefGoogle Scholar
Glasauer, S. Friedl, J. and Schwertmann, U., 1999 Properties of goethite prepared in acid and basic conditions in the presence of silicate Journal of Interface and Colloid Science 216 106115 10.1006/jcis.1999.6285.CrossRefGoogle ScholarPubMed
Goodman, B.A. and Lewis, D.G., 1981 Mossbauer spectra of aluminous goethites (a-FeOOH) Journal of Soil Science 32 351363 10.1111/j.1365-2389.1981.tb01711.x.CrossRefGoogle Scholar
Izumi, E. and Young, R.A., 1993 Rietveld analysis programs RIETAN and PREMOS and special applications The Rietveld Method Oxford Oxford University Press 236253.CrossRefGoogle Scholar
Jeanroy, E. Rajot, J.L. Pillon, P. and Herbillon, A.J., 1991 Differential dissolution of hematite and goethite in dithionite and its implications on soil yellowing Geoderma 50 7994 10.1016/0016-7061(91)90027-Q.CrossRefGoogle Scholar
Kosmas, C.S. Franzmeier, D.P. and Schulze, D.G., 1986 Relationship among derivative spectroscopy, color, crystallite dimensions and Al substitution of synthetic goethites and hematites Clays and Clay Minerals 34 625634 10.1346/CCMN.1986.0340602.CrossRefGoogle Scholar
Lewis, D.G. and Schwertmann, U., 1980 The effect of (OH) on the goethite produced from ferrihydrite under alkaline conditions Journal of Colloid Interface Science 78 543553 10.1016/0021-9797(80)90591-3.CrossRefGoogle Scholar
Macedo, J. and Bryant, B.B., 1989 Preferential microbial reduction of hematite over goethite in a Brazilian oxisol Soil Science Society of America Journal 53 11141118 10.2136/sssaj1989.03615995005300040022x.CrossRefGoogle Scholar
Muller, J.-P. Boquier, G., Schultz, L.G. Olphen, H. v. and Mumpton, F.A., 1987 Textural and mineralogical relationships between ferruginous nodules and surrounding clayey matrix in a laterite from Cameroon Proceedings of the International Clay Conference, Denver Bloomington, Indiana The Clay Minerals Society 184194.Google Scholar
Perinet, G. and Lafont, R., 1972 Sur les parametres cristallographiques des hematites alumineuses Contes Rendue Academie de Science 275 10211024.Google Scholar
Prasetyo, B.H. and Gilkes, R.J., 1994 Properties of iron oxides from red soils derived from tuff in western Java Australian Journal of Soil Research 32 781794 10.1071/SR9940781.CrossRefGoogle Scholar
Schneider, J. and Dinnebier, R.E., 1991 Gufi-Wyrjet: An integrated PC powder pattern analysis package Material Science Forum 79 277282 10.4028/www.scientific.net/MSF.79-82.277.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., 1987 The influence of aluminium on iron oxides. XIII. Properties of goethites synthesized in 0.2 M KOH at 25°C Clay Minerals 22 8392 10.1180/claymin.1987.022.1.07.CrossRefGoogle Scholar
Schwertmann, U., 1964 Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde 105 194202 10.1002/jpln.3591050303.CrossRefGoogle Scholar
Schwertmann, U., 1988 Goethite and hematite formation in the presence of clay minerals and gibbsite at 25°C Soil Science Society of America Journal 52 288291 10.2136/sssaj1988.03615995005200010052x.CrossRefGoogle Scholar
Schwertmann, U. and Carlson, L., 1994 Aluminum influence on iron oxides: XVII. Unit cell parameters and aluminum substitution of natural goethites Soil Science Society of America Journal 58 256261 10.2136/sssaj1994.03615995005800010039x.CrossRefGoogle Scholar
Schwertmann, U. and Cornell, R.M., 1991 Iron Oxides in the Laboratory Weinheim VCH.Google Scholar
Schwertmann, U. and Kämpf, N., 1985 Properties of goethite and hematite in kaolinitic soils of southern and central Brazil Soil Science 139 344350 10.1097/00010694-198504000-00008.CrossRefGoogle Scholar
Schwertmann, U. and Murad, E., 1983 Effect of pH on the formation of goethite and hematite from ferrihydrite Clays and Clay Minerals 31 277284 10.1346/CCMN.1983.0310405.CrossRefGoogle Scholar
Schwertmann, U. Fitzpatrick, R.W. Taylor, R.M. and Lewis, D.G., 1979 The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites Clays and Clay Minerals 27 105112 10.1346/CCMN.1979.0270205.CrossRefGoogle Scholar
Schwertmann, U. Friedl, J. and Stanjek, H., 1999 From Fe(III) ions to ferrihydrite and then to hematite Journal of Colloid and Interface Science 209 215223 10.1006/jcis.1998.5899.CrossRefGoogle ScholarPubMed
Singh, B. and Gilkes, R.J., 1992 Properties and distribution of iron oxides and their association with minor elements in the soils of south-western Australia Journal of Soil Science 43 7798 10.1111/j.1365-2389.1992.tb00121.x.CrossRefGoogle Scholar
Stanjek, H. and Schwertmann, U., 1992 The influence of aluminum on iron oxides. Part XVI: Hydroxyl and aluminum substitution in synthetic hematites Clays and Clay Minerals 40 347354 10.1346/CCMN.1992.0400316.CrossRefGoogle Scholar
Steinwehr, HEv, 1967 Ursachen der Abweichung von der Vegard’ schen Regel Zeitschrift für Kristallographie 1235 360376 10.1524/zkri.1967.125.125.360.Google Scholar
Taylor, R.M., 1988 Proposed mechanism for the formation of soluble Si-Al and Fe(III)-Al hydroxy complexes in soils Geoderma 42 6577 10.1016/0016-7061(88)90023-7.CrossRefGoogle Scholar
Taylor, R.M. and Schwertmann, U., 1978 The influence of aluminum on iron oxides. I. The influence of Al on Fe oxide formation from the Fe(II) system Clays and Clay Minerals 26 373383 10.1346/CCMN.1978.0260601.CrossRefGoogle Scholar
Torrent, J. Schwertmann, U. and Barron, V., 1987 The reductive dissolution of synthetic goethite and hematite in dithionite Clay Minerals 22 329337 10.1180/claymin.1987.022.3.07.CrossRefGoogle Scholar
Wolska, E., 1981 The structure of hydrohematite Zeitschrift für Kristallographie 154 6975.CrossRefGoogle Scholar
Wolska, E. and Szajda, W., 1985 Structural and spectroscopic characteristics of synthetic hydrohematite Journal of Material Science 20 44074414 10.1007/BF00559329.CrossRefGoogle Scholar
Wolska, E. and Szajda, W., 1988 The effect of cationic and anionic substitution on the α-(Al, Fe)2O3 lattice parameters Solid State Ionics 28 13201323 10.1016/0167-2738(88)90379-7.CrossRefGoogle Scholar
Zeese, R. Schwertmann, U. Tietz, G.F. and Jux, U., 1994 Mineralogy and stratigraphy of three deep lateritic profiles of the Jos plateau, Central Nigeria Catena 21 195214 10.1016/0341-8162(94)90012-4.CrossRefGoogle Scholar