Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-04T19:16:58.540Z Has data issue: false hasContentIssue false

Dissolution Kinetics of Phlogopite. II. Open System Using an Ion-Exchange Resin

Published online by Cambridge University Press:  01 July 2024

Charles V. Clemency
Affiliation:
Department of Geological Sciences, State University of New York at Buffalo, 4240 Ridge Lea Road, Amherst, New York 14226
Feng-Chih Lin
Affiliation:
Department of Geological Sciences, State University of New York at Buffalo, 4240 Ridge Lea Road, Amherst, New York 14226

Abstract

The rate of dissolution of phlogopite in an open system was measured at low temperature and pressure and at pH 3–5. The maximum dissolution rate was achieved by maintaining extremely low ionic concentrations in the solution using a cation-exchange resin (hydrogen form) as a trap for released cations. The resin also served as a source of hydrogen ions and acted as a buffer. The concentrations of ions adsorbed on the resin and remaining in solution were measured, along with surface area and cation-exchange capacity. The amount of phlogopite dissolved after 1010 hr was 67 times that dissolved using a CO2-buffered, closed-system method. During the first hour of the experiment, dissolution was incongruent, but later became congruent from 1 to 1010 hr. From 1 to 200 hr the reaction had linear kinetics. The dissolution rate for the first 200 hr of the reaction was 2.0 × 10−14 mole KMg3AlSi3O10(OH)2/cm2/sec. Since no evidence of parabolic kinetics was found, there is no reason to postulate the formation of a “protective layer.”

Резюме

Резюме

Скорость растворения флогопита измерялась в открытой системе при низких температуре и давлении, и при рН от 3 до 5. Максимальная скорость растворения достигалась путем поддерживания очень низкой концунтрации ионов в растворе при использовании катионообменной смолы (водородная форма) для подхвата освобождающихся катионов. Смола использовалась также, как источник водородных ионов и действовала как буферный раствор. Измерялись концентрации ионов, которые были адсорбированы смолой и ионов, которые оставались в растворе, а также площадь поверхности и катионообменная емкость. Количество флогопита, растворенного после истечения 1010 часов, было в 67 раз больше, чем количество флогопита, растворенного с помощью буферного раствора СO2 методом замкнутой системы. Во время первого часа эксперимента растворение являлось инконгруэнтным, но потом, от 1 до 1010 часов становилось конгруэнтным. От 1 до 200 часов кинетика реакции была линейная. Скорость растворения во время начальных 200 часов реакции была 2,0 × 10−4 моль KМg3АlSi3О10(ОН)2/cm2/сек. Так как никакой параболической кинетеки не наблюдалось, нет оснований для предположения о формировании “защитного слоя.” [Е.С.]

Resümee

Resümee

Die Lösungsgeschwindigkeit von Phlogopit in einem offenen System wurde bei niedriger Temperatur und niedrigem Druck bei pH-Werten von 3–5 gemessen. Die größte Lösungsgeschwindigkeit erhielt man, wenn die Ionenkonzentrationen in der Lösung extrem niedrig gehalten wurden, indem ein Ionenaustauschharz (Wasserstoff-Form) als Falle für die in Lösung gegangenen Kationen verwendet wurde. Das Austauschharz diente auch als Wasserstoffionenquelle und als Puffer. Es wurden die am Austauschharz adsorbierten Ionenkonzentrationen und die in Lösung verbleibenden Ionenkonzentrationen gemessen sowie die Oberfläche und die Ionenaustauschkapazität. Die nach 1010 Stunden gelöste Phlogopitmenge war 67 × so hoch wie die, die im geschlossenen System mit CO2-Pufferung gelöst wurde. Während der ersten Stunde des Experimentes war die Lösung inkongruent, wurde aber später im Zeitraum von 1–1010 Stunden kongruent. Im Zeitraum von 1–200 Stunden hatte die Reaktion eine lineare Kinetik. Die Lösungsgeschwindigkeit für die ersten 200 Stunden der Reaktion betrug 2,0 × 10−14 Mol KMg3AlSi3O10(OH)2/cm2/ sec. Da kein Hinweis für eine parabolische Kinetik gefunden wurde, gibt es keinen Grund, die Bildung einer Schutzschicht anzunehmen. [U.W.]

Résumé

Résumé

Le taux de dissolution de la phlogopite dans un système ouvert a été mesuré à température et pression basses, et à un pH de 3–5. Le taux de dissolution maximum a été atteint en maintenant des concentrations ioniques extrèmement basses dans le système, utilisant une résine à échange de cations (forme hydrogène) comme piège pour les cations relâchés. La résine a aussi servi de source pour les ions hydrogène et s'est comportée comme tampon. Les concentrations des ions adsorbés sur la résine et de ceux restant en solution ont été mesurées, ainsi que l'aire de surface et la capacité d’échange de cations. La quantité de phlogopite dissoute après 1010 heures était 67 fois plus grande que celle dissoute utilisant une méthode tamponée au CO2, à système fermé. Pendant la première heure de l'expérience, la dissolution était inconforme mais elle est devenue conforme plus tard, de 1 à 1010 heures. D'une à 200 heures, la réaction avait une kinétique linéaire. Le taux de dissolution pour les 200 premières heures de la réaction était 2,0 × 10 −14 mole KMg3AlSi3O10(OH)2/cm2/sec. Puisqu'il n'a été trouvé aucune évidence de kinétique parabolique, il n'y a pas de raison pour postuler la formation d'une “couche protectrice.” [D.J.]

Type
Research Article
Copyright
Copyright © 1981, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, P. W., (1958) Potassium uptake by cation-exchange resins from soils and minerals Nature 182 15941595.CrossRefGoogle Scholar
Arshad, M. A. St. Arnaud, R. J. and Huang, P. M., (1972) Dissolution of trioctahedral layer silicates by ammonium oxalate, sodium dithionite-citrate-bicarbonate, and potassium pyrophosphate Can. J. Soil Sci. 52 1925.CrossRefGoogle Scholar
Barber, T. E. and Matthews, B. C., (1962) Release of nonexchangeable soil potassium by resin-equilibration and its significance for crop growth Can. J. Soil Sci. 42 266273.CrossRefGoogle Scholar
Bolt, G. H. and Frissel, M. J., (1960) The preparation of clay suspensions with specific ionic composition by means of exchange resins Soil Sci. Soc. Amer. Proc. 24 172177.CrossRefGoogle Scholar
Brown, E., Skougstad, M. W., and Fishman, M. J. (1970) Methods for collection and analysis of water samples for dissolved minerals and gases: U.S. Geol. Surv. Techniques of Water-Resources Investigations Book 5, Ch. A–1, 160 pp.Google Scholar
Gastuche, M. C., Rosenquist, T. and Graff-Petersen, P., (1963) Kinetics of acid dissolution of biotite. I. Interfacial rate process followed by optical measurement of the white silica rim Proc. Int. Clay Conf., Stockholm, 1963 Vol. I Oxford Pergamon Press 6776.Google Scholar
Haagsma, T. and Miller, M. H., (1963) The release of nonexchangeable soil potassium to cation-exchange resins as influenced by temperature, moisture and exchanging ion Soil Sci. Soc. Amer. Proc. 27 153156.CrossRefGoogle Scholar
Hanway, J. J. Scott, A. D. and Stanford, G., (1957) Replaceability of ammonium fixed in clay minerals as influenced by ammonium or potassium in the extracting solution Soil Sci. Soc. Amer. Proc. 21 2934.CrossRefGoogle Scholar
Huang, W. H. Keller, W. D. and Serratosa, J. M., (1973) Kinetics and mechanisms of dissolution of Fithian illite in two complexing organic acids Proc. Int. Clay Conf, Madrid, 1972 Madrid Div. Ciencias C.S.I.C. 321331.Google Scholar
La Iglesia, A. and Martin-Vivaldi, J. L., (1975) Synthesis of kaolinite by homogeneous precipitation at room temperature. I. Use of anionic resin in (OH) form Clay Miner. 10 399405.CrossRefGoogle Scholar
Lahav, E. Harper, J. E. and Hageman, R. H., (1976) Improved soybean growth in urea with pH buffered by a carboxy resin Crop Sci. 16 325328.CrossRefGoogle Scholar
Lin, F. C. and Clemency, C. V., (1981) Dissolution kinetics of phlogopite. I. Closed system Clays & Clay Minerals 29 101106.Google Scholar
Plummer, L. N., Jones, B. F., and Truesdell, A. H. (1976) WATEQF: a FORTRAN IV version of WATEQ, a computer program for calculating chemical equilibrium of natural water: U.S. Geol. Surv. Water-Resources Invest. 76–13, 61 pp.Google Scholar
Salomon, M. and Smith, J. B., (1957) A comparison of methods for determining extractable soil potassium in fertilizer test plots Soil Sci. Soc. Amer. Proc. 21 222225.CrossRefGoogle Scholar
Schnitzer, M. and Kodama, H., (1976) The dissolution of micas by fulvic acid Geoderma 15 381391.CrossRefGoogle Scholar
Scott, A. D. Edwards, A. P. and Bremner, J. M., (1960) Removal of fixed ammonium from clay minerals by cation exchange resins Nature 185 792.CrossRefGoogle Scholar
Scott, A. D. Smith, S. J. and Bailey, S. W., (1966) Susceptibility of interlayer potassium in micas to exchange with sodium Clays and Clay Minerals, Proc. 14th Natl. Conf, Berkeley, California, 1965 New York Pergamon Press 6981.Google Scholar
t’Serstevens, A. Rouxhet, P. G. and Herbillon, A. J., (1978) Alteration of mica surfaces by water and solutions Clay Miner. 13 401409.CrossRefGoogle Scholar