Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T15:27:27.519Z Has data issue: false hasContentIssue false

Dissolution Kinetics of Phlogopite. I. Closed System

Published online by Cambridge University Press:  01 July 2024

Feng-Chih Lin
Affiliation:
Department of Geological Sciences, State University of New York at Buffalo, 4240 Ridge Lea Road, Amherst, New York 14226
Charles V. Clemency
Affiliation:
Department of Geological Sciences, State University of New York at Buffalo, 4240 Ridge Lea Road, Amherst, New York 14226
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dry ground phlogopite was placed in deionized water saturated with CO2 at room temperature and pressure. The bulk solution was buffered between a pH of 5 and 6 which is close to the pH of natural weathering systems. The conditions simulated a closed system. After 1010 hr, 2.0% of the total K, 0.95% of the Mg, 0.54% of the Si, and 0.74% of the F had been released, indicating that the dissolution was incongruent. Most of the K was released within 3 min, apparently by a rapid surface exchange with hydrogen ion. One-third of the cation-exchange capacity of this phlogopite arises from cations released from the outer surfaces, while two-thirds arises from the release of more deeply seated cations. All cations exhibited decreasing release with time, the slowest being Si. The rate-controlling “factor” in the later stages is related to the release of Si. It is difficult to distinguish linear from parabolic kinetics in the later stages because of the slow rate of dissolution; however, linear kinetics is most likely. If linear kinetics is applicable, the dissolution rate of Si was 3.8 × 10−17 mole/cm2/sec. Conclusions may be affected by the length of the experimental run.

Резюме

Резюме

Сухой, перемеленый флогопит был помещен в деионизированную воду, насыщенную СO2 при комнатной температуре и давлении. Основной раствор был буферован между рН 5 и 6, эти величины близки к рН в системе природной эрозии. Условия симулировали замкнутую систему. После 1010 часов 2% из всего К, 0,95% из Mg, 0,54% из 81 и 0,74% из Р были освобождены, что указывает на инконгруэнтное растворение. Большая часть К была освобождена во время 3 минут, очевидно, при помощи быстрого поверхностного обмена с водородными ионами. Одна треть катионообменной емксти этого флогопвта является результатом освобождения катионов из внешних поверхностей, а две трети—резюльтатом освобождения катионов, находящихся внутри. Для всех катионов наблюдалась уменьшающаяся способность освобождения со временем, самая медленная для 81. “Фактор,” регулирующий скорость обмена на более поздних этапах реакции, связан с освобождением 81. На этих поздних этапах трудно отличить линейную кинетику от параболической вследствие медленной скорости растворения. Тем не менее, линейная кинетика является более вероятной. При предположении линейной кинетики, скорость растворения Si была 3, 8 х 10−17 моль/cm2/сек. Время проведения экспериментов может влиять на эти выводы. [Е.С.]

Resümee

Resümee

Trocken gemahlener Phlogopit wurde in deionisiertes Wasser gegeben, das bei Zimmertemperatur und Atmosphärendruck mit CO2 gesättigt war. Die Gesamtlösung wurde auf pH 5–6 gepuffert, was dem pH-Wert der natürlichen Verwitterung nahekommt. Die Bedingungen simulierten ein geschlossenes System. Nach 1010 Stunden Reaktionszeit waren 2,0% des Gesamt-Kalium, 0,95% des Mg, 0,54% des Si, und 0,74% des F in Lösung gegangen. Das deutet darauf hin, daß die Auflösung inkongruent verlief. Das meiste Kalium ging innerhalb von 3 Minuten in Lösung, offensichtlich durch einen schnellen Austausch gegen Wasserstoffionen an den Oberflächen. Ein Drittel der Ionenaustauschkapazität dieses Phlogopit rührt von den Kationen her, die von den äußeren Oberflächen in Lösung gehen, während zwei Drittel von tiefer gelegenen Kationen herrühren. Alle Kationen gingen mit zunehmender Zeit in abnehmenden Mengen in Lösung, wobei Silicium am langsamsten in Lösung ging. Der geschwindigkeitsbestimmende Faktor in den letzten Stadien hängt mit dem Inlösunggehen des Siliciums zusammen. In den späten Stadien ist, wegen der geringen Lösungsgeschwindigkeit, schwer zwischen linearer und parabolischer Kinetik zu unterscheiden; jedoch ist eine lineare Kinetik am wahrscheinlichsten. Wenn eine lineare Kinetik angewendet werden kann, dann betrug die Lösungsgeschwindigkeit für Silicium 3,8 × 10− 17 Mol/cm2/sec. Diese Schlußfolgerungen könnten dutch die Länge der Versuchszeit beeinflußt sein. [U.W.]

Résumé

Résumé

De la phlogopite sèche moulue a été placée dans de l'eau déionisée saturée de CO2 à température et pression ambiantes. La solution en masse a été tamponée entre un pH de 5 et de 6, ce qui est proche du pH de systèmes d'altération naturels. Après 1010 heures, 2,0% du K total, 0,95% du Mg, 0,54% du Si, et 0,74% du F avaient été relâchés, indiquant que la dissolution était inconforme. La plupart du K a été relâché endéans 3 min, apparemment par un échange de surface rapide avec l'ion hydrogène. Un tiers de la capacité d’échange de cations de cette phlogopite provient de cations relâchés des surfaces externes, tandis que deux tiers proviennent du relâchement de cations situés plus profondément. Tous les cations ont exhibé un relâchement décroissant à mesure que le temps augmentait, le plus lent étant Si. Le “facteur” contrôllant l'allure dans les derniers stages est apparenté au relâchement de Si. Il est difficile de différencier la kinétique linéaire de la kinétique parabolique dans les derniers stages à cause du taux de dissolution lent, cependant, la kinétique linéaire est la plus probable. Si la kinétique linéaire peut êire appliquée, le taux de dissolution de Si était 3,8 × 10−17 mole/cm2/sec. Les conclusions peuvent être affectées par la longueur de l'expérience. [D.J.]

Type
Research Article
Copyright
Copyright © 1981, The Clay Minerals Society

References

Arshad, M. A. St. Arnaud, R. J. and Huang, P. M., (1972) Dissolution of trioctahedral layer silicates by ammonium oxalate, sodium dithionite-citrate-bicarbonate, and potassium pyrophosphate Can. J. Soil Sci. 52 1925.CrossRefGoogle Scholar
Berner, R. A. and Holdren, G. R. Jr., (1977) Mechanism of feldspar weathering: some observational evidence Geology 5 369372.2.0.CO;2>CrossRefGoogle Scholar
Berner, R. A. and Holdren, G. R. Jr., (1979) Mechanism of feldspar weathering—II. Observations of feldspar from soils Geochim. Cosmochim. Acta 43 11731186.CrossRefGoogle Scholar
Berner, R. A., Sjoberg, E. L., and Schott, J. (1980) Mechanism of pyroxene and amphibole weathering: I. Experimental studies: Proc. 3rd Int. Sym. on Water-Rock Interaction, Edmonton, Canada, 4445.Google Scholar
Brindley, G. W. and Youell, R. F., (1951) A chemical determination of ‘tetrahedral’ and ‘octahedral’ aluminum ions in a silicate Acta Crystallog. 4 495496.CrossRefGoogle Scholar
Brown, E., Skougstad, M. W., and Fishman, M. J. (1970) Methods for collection and analysis of water samples for dissolved minerals and gases: U.S. Geol. Surv. Techniques of Water-Resources Investigations Book 5, Ch. A–1, 160 pp.Google Scholar
Busenberg, E. and Clemency, С V, (1973) Determination of the cation exchange capacity of clays and soils using an ammonia electrode Clays & Clay Minerals 21 213217.CrossRefGoogle Scholar
Busenberg, E. and Clemency, С V, (1976) The dissolution kinetics of feldspars at 25°C and 1 atm. CO2 partial pressure Geochim. Cosmochim. Acta 40 4149.CrossRefGoogle Scholar
Cabrera, F. and Talibudeen, O., (1978) The release of aluminum from aluminosilicate minerals. I. Kinetics Clays & Clay Minerals 26 434440.CrossRefGoogle Scholar
Deer, W. A. Howie, R. A. and Zussman, J., (1962) Rock Forming Minerals, Vol. 3, Sheet Silicates London Longman.Google Scholar
Garrels, R. M. Howard, P. and Swineford, A., (1959) Reactions of feldspar and mica with water at low temperature and pressure Clays and Clay Minerals, Proc. 6th Nat. Conf., Berkeley, California, 1957 New York Pergamon Press 6888.Google Scholar
Gastuche, M. C., Rosenquist, I. T. and Graff-Petersen, P., (1963) Kinetics of acid dissolution of biotite. I. Interfacial rate process followed by optical measurement of the white silica rim Proc. Int. Clay Conf., Stockholm, 1963, Vol. I Oxford Pergamon Press 6776.Google Scholar
Grandstaff, D. E. (1980) The dissolution rate of forsteritic olivine from Hawaiian beach sand: Proc. 3rd Int. Symp. on Water-Rock Interaction, Edmonton, Canada, 7274.Google Scholar
Holdren, G. R. Jr. and Berner, R. A., (1979) Mechanism of feldspar weathering—I. Experimental studies Geochim. Cosmochim. Acta 43 11611171.CrossRefGoogle Scholar
Huang, W. H. Keller, W. D. and Serratosa, J. M., (1973) Kinetics and mechanisms of dissolution of Fithian illite in two complexing organic acids Proc. Int. Clay Conf., Madrid, 1972 Madrid Div. Ciencias C.S.I.C. 321331.Google Scholar
Newman, A. C. D. and Brown, G., (1969) Delayed exchange of potassium from some edges of mica flakes Nature 22 175176.CrossRefGoogle Scholar
Petrovic, R. Berner, R. A. and Goldhaber, M. B., (1976) Rate control in dissolution of alkali-feldspar—I. Study of residual feldspar grains by X-ray photoelectron spectroscopy Geochim. Cosmochim. Acta 40 537548.CrossRefGoogle Scholar
Plummer, L. N., Jones, B. F., and Truesdell, A. H. (1976) WATEQF, a FORTRAN IV version of WATEQ, a computer program for calculating chemical equilibrium of natural water: U.S. Geol. Surv. Water-Resources Invest. 76–13, 61 pp.Google Scholar
Schnitzer, M. and Kodama, H., (1976) The dissolution of micas by fulvic acid Geoderma 15 381391.CrossRefGoogle Scholar
Scott, A. D. Smith, S. J. and Bailey, S. W., (1966) Susceptibility of interlayer potassium in micas to exchange with sodium Clays and Clay Minerals, Proc. 14th Natl. Conf, Berkeley, California, 1965 New York Pergamon Press 6981.Google Scholar
Scott, A. D. Smith, S. J. and Bailey, S. W., (1967) Visible changes in macro mica particles that occur with potassium depletion Clays and Clay Minerals, Proc. 15th Natl. Conf, Pittsburgh, Pennsylvania, 1966 New York Pergamon Press 357373.Google Scholar
t’Serstevens, A. Rouxhet, P. G. and Herbillon, A. J., (1978) Alteration of mica surfaces by water and solutions Clay Miner. 13 401409.CrossRefGoogle Scholar
Shapiro, L. (1975) Rapid analysis of silicate, carbonate, and phosphate rocks—revised edition: U.S. Geol. Surv. Bull. 1401, 76 pp.Google Scholar
Smith, R. W. and Hem, J. D. (1972) Effect of aging on aluminum hydroxide complexes in dilute aqueous solution: U.S. Geol. Surv. Water-Supply Pap. 1827–D, 51 pp.Google Scholar