Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-07T03:13:56.715Z Has data issue: false hasContentIssue false

Dioctahedral Corrensite from Permian Red Beds, Lisbon Valley, Utah

Published online by Cambridge University Press:  02 April 2024

S. J. Morrison
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112
W. T. Parry
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Regularly interstratified chlorite/smectite (corrensite) occurs as grain coatings in marine and eolian sandstones of the Permian Cutler Formation in Lisbon Valley, Utah. Corrensite dominates the <2-μm clay size fraction along with lesser amounts of regularly interstratified illite/smectite in bleached, permeable sandstones that are interbedded with smectite-dominated arkosic, red, laterally discontinuous fluvial sandstones. Chemical and X-ray powder diffraction analyses of the corrensites show them to be di/dioctahedral with 060 spacings of 1.501 to 1.508 Å and to contain significantly higher Al:Mg ratios than more common trioctahedral types. Calculated structural formulae are: corrensite, M0.6(Fe3+0.2Mg1.6Al4.6)(Al0.2Si7.8)O20(OH)10; illite/smectite, M1.5(Fe3+0.1Mg1.7Al2.8)(Al1.6Si6.4)O20(OH)4; and smectite, M0.9(Fe3+0.3Mg1.2Al2.8)(Al0.6Si7.4)O20(OH)4.

Chemical similarity between the smectite and the corrensite and pervasive distribution of smectite in low-permeability shales and siltstones suggest that the smectite was a precursor of the corrensite. Three stages of mineral precipitation in the Cutler Formation have been recognized. Quartz precipitated early as grain overgrowths, followed by the formation of authigenic clay minerals, and later calcite cementation which destroyed much of the original rock fabric. Calculations show that aluminous corrensite was favored by elevated temperature ( 100°C), low pH, and low dissolved silica. Local hydrothermal fluids rising along the Lisbon fault apparently permeated the Cutler red bed section and precipitated the clay minerals. The assemblage corrensite + illite/smectite in the sandstones probably formed by interaction of formation fluids with smectite and an Al-bearing phase, such as K-feldspar or kaolinite.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

References

April, R. H., 1980 Regularly interstratified chlorite/ver-miculite in contact metamorphosed red beds, Newark Group, Connecticut Valley Clays & Clay Minerals 28 111.CrossRefGoogle Scholar
Bailey, S. W., 1980 Summary of recommendations of AIPEA nomenclature committee on clay minerals Amer. Mineral. 65 17.Google Scholar
Blatter, C. L., Roberson, H. E. and Thompson, G. R., 1973 Regularly interstratified chlorite-dioctahedral smectite in dike-intruded shale, Montana Clays & Clay Minerals 21 207212.CrossRefGoogle Scholar
Bradley, W. F. and Weaver, C. E., 1956 Chlorite-vermic-ulite Amer. Mineral. 41 497504.Google Scholar
Brigatti, M. F. and Poppi, L., 1984 Crystal chemistry of corrensite: A review Clays & Clay Minerals 32 391399.CrossRefGoogle Scholar
Campbell, J. A., Steele-Mallory, B. A. and Baars, D. L., 1979 Uranium in the Cutler Formation, Lisbon Valley, Utah Permian-land, Guidebook to the 9th Field Conf. 2332.Google Scholar
Earley, J. W., Brindley, G. W., McVeagh, W. J. and Vanden Heuvel, R. C., 1956 Montmorillonite-chlorite Amer. Mineral. 41 258267.Google Scholar
Frank-Kamenetsky, V. A., Logvineko, N. V., Drits, V. A., Rosenqvist, I. Th. and Graff-Petersen, P., 1963 Tosudite—A new mineral forming the mixed-layer phase in alushite Proc. Int. Clay Conf., Stockholm, Sweden, 1963, Vol. 2 Oxford Pergamon Press 181186.Google Scholar
Furbish, W. J., 1975 Corrensite of deuteric origin Amer. Mineral. 60 928930.Google Scholar
Garrels, R. M. and Thompson, M. E., 1962 A chemical model for sea water at 25°C and one atmosphere total pressure Amer. J. Science 260 5766.CrossRefGoogle Scholar
Grim, R. E., Droste, J. B., Bradley, W. F. and Swineford, A., 1960 A mixed-layer clay mineral associated with an evaporite Clays and Clay Minerals, Proc. 8th Natl. Conf, Norman, Oklahoma, 1959 New York Pergamon Press 228236.Google Scholar
Hanshaw, B. B. and Hill, G. A., 1969 Geochemistry and hydrodynamics of the Paradox basin region, Utah, Colorado, and New Mexico Chem. Geol. 4 263294.CrossRefGoogle Scholar
Helgeson, H. C., Delany, J. M., Nesbitt, H. W. and Bird, D. K., 1978 Summary and critique of the thermodynamic properties of rock-forming minerals Amer. J. Science 278–A 1229.Google Scholar
Jackson, M. L., 1969 Soil Chemical Analysis—Advanced Course 2nd ed..Google Scholar
Johnson, L. J., 1964 Occurrence of regularly interstratified chlorite-vermiculite as a weathering product of chlorite in a soil Amer. Mineral. 49 556572.Google Scholar
Kopp, O. C. and Fallis, S. M., 1974 Corrensite in the Wellington Formation, Lyons, Kansas Amer. Mineral. 59 623624.Google Scholar
Kubler, B., 1973 La corrensite, indicateur possible de milieux de sédimentation et du degré de transformation d’un sédiment Bull. Centre Rech. Pau SNAP 7 543556.Google Scholar
Lippman, F., 1954 Über einen Keuperton von Zaiser-sweiker bei Maulbroon Heidi. Beitr. Mineral. Petrog. 4 130134.Google Scholar
Mack, G. H. and Rasmussen, K. A., 1984 Alluvial-fan sedimentation of the Cutler Formation (Permo-Pennsylvanian) near Gateway, Colorado Geol. Soc. Amer. Bull. 95 109116.2.0.CO;2>CrossRefGoogle Scholar
McCulley, B. L., Thackston, J. W. and Preslo, L. M., 1984 Status report: Geochemical interactions between ground water and Paleozoic strata, Gibson dome area, southeastern Utah: Unnumbered BMI/ONWI topical report, prepared by Woodwood-Clyde Consultants for Battelle Memorial Institute, Office of Nuclear Waste Isolation, Columbus, Ohio .Google Scholar
Millot, G., Camez, T., Swineford, A. and Franks, D. C., 1963 Genesis of vermiculite and mixed-layer vermiculite in the evolution of the soil of Franc Clays and Clay Minerals, Proc. 10th Natl. Conf, Austin, Texas, 1961 New York Pergamon Press 9095.Google Scholar
Morrison, S. J. and Parry, W. T., 1986 Formation of carbonate-sulfate veins associated with copper ore deposits from saline basin brines, Lisbon Valley, Utah; fluid inclusion and isotopic evidence Economic Geology 81 8 18531866.CrossRefGoogle Scholar
Pacquet, A. (1968) Analcime et argiles diagénétiques dans les formations sédimentaires de la région d’Agades (Republic du Niger): Mem. Serv. Carte Geol. Als.-Lorr. 27, 221 pp.Google Scholar
Parker, J. M., 1968 Lisbon field area, San Juan County, Utah Natural Gases of North America, Vol. 2 9 13711388.Google Scholar
Peterson, M. N. A., 1961 Expandable chloritic clay minerals from upper Mississippian carbonate rocks of the Cumberland Plateau in Tennessee Amer. Mineral. 46 12451269.Google Scholar
Pettijohn, F. J., Potter, P. E. and Siever, R., 1973 Sand and Sandstone New York Springer-Verlag.CrossRefGoogle Scholar
Reynolds, R. C., Brindley, G. W. and Brown, G., 1980 Interstratified clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Soc. 249304.CrossRefGoogle Scholar
Reynolds, R. C., 1983 Calculation of absolute diffraction intensities for mixed-layered clays Clays & Clay Minerals 31 233234.CrossRefGoogle Scholar
Senkayi, A. L., Dixon, J. B. and Hossner, L. R., 1981 Transformation of chlorite to smectite through regularly interstratified intermediates Soil Sci. Soc. Amer. J. 45 650656.CrossRefGoogle Scholar
Shimoda, S., 1969 New data for tosudite Clays & Clay Minerals 17 179184.CrossRefGoogle Scholar
Suchecki, R. K., Perry, E. A. and Hubert, J. F., 1977 Clay petrology of Cambro-Ordivician continental margin, Cow Head klippe, western Newfoundland Clays & Clay Minerals 25 163170.CrossRefGoogle Scholar
Sudo, T., Hayashi, H. and Swineford, A., 1956 Types of mixed-layer minerals from Japan Clays and Clay Minerals, Proc. 4th Natl. Conf, University Park, Pennsylvania, 1955 389412.CrossRefGoogle Scholar
Sudo, T. and Kodama, H., 1957 An aluminum mixed-layer mineral of montmorillonite-chlorite Z. Kristallogr. 109 379387.CrossRefGoogle Scholar
Sudo, T., Takahashi, H. and Matsui, H., 1954 Long spacing of 30 Å from a fireclay Nature 173 161.CrossRefGoogle Scholar
Tardy, Y. and Garrels, R. M., 1974 A method of estimating the Gibbs energies of formation of layer silicates Geochim. Cosmochim. Acta 38 11011116.CrossRefGoogle Scholar
Tompkins, R. E., 1981 Scanning electron microscopy of a regular chlorite/smectite (corrensite) from a hydrocarbon reservoir sandstone Clays & Clay Minerals 29 233235.CrossRefGoogle Scholar
Truesdell, A. H. and Jones, B. F., 1974 WATEQ, a computer program for calculating chemical equilibria of natural waters J. Research, U.S. Geol. Surv. 2 233248.Google Scholar
Velde, B., 1977 Clays and Clay Minerals in Natural and Synthetic Systems Amsterdam Elsevier.Google Scholar
Weaver, C. E., Singer, A. and Galan, E., 1984 Origin and geologic implications of the palygorskite deposits of S.E. United States Palygor-skite-Sepiolite Occurrence, Genesis and Uses Amsterdam Elsevier 3958.Google Scholar
Weaver, C. E., Conner, T. G. and Padlan, A., 1982 Geochemistry of Salt No. 6, Gibson dome, Utah, status report, November 1982: Unnumbered BMI/ONWI topical report from Georgia Institute of Technology to Office of Nuclear Waste Isolation, Columbus, Ohio .Google Scholar
Wood, H. B. and Ridge, J. D., 1968 Geology and exploitation of uranium deposits in the Lisbon Valley area, Utah Ore Deposits of the United States, 1933–1967 New York American Institute of Mining, Metallurgical and Petroleum Engineers 770789.Google Scholar