Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T20:25:28.272Z Has data issue: false hasContentIssue false

The Diffusion of Interlamellar Water in the 23.3 Å Na-Montmorillonite:Pyridine/H2O Intercalate by Quasielastic Neutron Scattering

Published online by Cambridge University Press:  01 July 2024

J. M. Adams
Affiliation:
Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth, SY23 1NE, U.K.
C. Breen
Affiliation:
Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth, SY23 1NE, U.K.
C. Riekel
Affiliation:
Institut Laue-Langevin, 156X, Grenoble, Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The diffusion of water in the title intercalate has been measured by quasielastic neutron scattering. The diffusion coefficient (6.1 × 10−7 cm2 s−1 at 23.5°C) is one order less than that found previously for a sodium-exchanged montmorillonite which, however, contained 4 times as much water in the interlamellar space. The activation energy for the motion has been deduced to be 18 kJ mol−1. Also it has been demonstrated that upon the time scale of the neutron scattering events (faster than 10−9 s) the hydroxyl groups of the clay lattice are not in motion.

Резюме

Резюме

Диффузия воды в прослойку 23,3 Å Ыа-монтмориллонит:пиридии/Н2O измерялась с помошью квази-эластичного рассеивания нейтронов. Диффузионный коеффициент (6,1 × 10-7 cm2/s при 23,5°С) на один порядок меньше, чем было обнаружено ранее для монтмориллонита с обменным натрием, который однако содержал в четыре раза больше воды в межслойных промежутках. Была вычислена активационная энергия для перемещения, которая оказалась равной 18 кдж/мол. Было также продемонстрировано, что в масштабе временных событий нейтронного рассеивания (быстрее, чем 10−9 сек) гидроксильные группы решетки глины не находятся в движении.

Resümee

Resümee

Die Diffusion von Wasser in der Titeleinschiebung wurde mit quasi-elastischer Neutronenstreuung gemessen. Der Diffusionskoeffizient (6,1 × 10-7 cm2/s bei 23,5°C) ist um eine Ordnung niedriger als der welcher voher für ein Natriumausgetauschtes Montmorillonit gefunden wurde, welches allerdings viermal soviel Wasser im interlamellaren Raum enthält. Die Aktivierungsenerdie für die Bewegung wurde auf 18 kj/mol geschätzt. Es wurde auch demonstriert, daß auf der Zeitskala der Neutronénstreuungsereignisse (schneller als 10-9s), die Hydroxylgruppen des Tongitters sich nicht bewegen.

Résumé

Résumé

La diffusion d'eau dans la matière intercalée mentionée dans le titre a été mesurée par dispersion quasi-élastique de neutrons. Le coefficient de diffusion (6,1 × 10-7 cm2/s à 23,5°C) est un ordre de grandeur plus bas que celui trouvé dans le passé pour une montmorillonite échangée pour du sodium qui, pourtant, contenait quatre fois plus d'eau dans l'espace interfeuillet. On a déduit que l’énergie d'activation pour le mouvement était 18 kj/mol. Il a aussi été démontré que sur l’échelle de temps des événements de la dispersion de neutrons (plus rapide que 10-9 s) les groupes hydroxyles du réseau cristallin de l'argile n’étaient pas en mouvement.

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

References

Adams, J. M., Breen, C., and Rickel, C. (1978) Deuterium/hydrogen exchange in interlamellar water in the 23.3 Å Na+-montmorillonite: pyridine/water intercalate: J. Colloid Interface Sci. (in press).CrossRefGoogle Scholar
Adams, J. M., Reid, P. I. and Walters, M. J. (1977) The cation exchange capacity of clays: Sch. Sci. Rev. 722723.Google Scholar
Adams, J. M., Thomas, J. M. and Walters, M. J. (1975) Surface and intercalate chemistry of layered silicates. Part IV. Crystallographic, electron-spectroscopic and kinetic study of the sodium-montmorillonite: pyridine system: J. Chem. Soc. Dalton Trans. 14591463.Google Scholar
Birr, M., Heidemann, A. and Alefeld, B. (1971) A neutron spectrometer with extremely high energy resolution: Nucl. Instrum. Methods 435439.CrossRefGoogle Scholar
Boss, B. D. and Stejskal, E. O. (1965) Anisotropic diffusion in hydrated vermiculite: J. Chem. Phys. 43, 10681069.CrossRefGoogle Scholar
Boss, B. D. and Stejskal, E. O. (1968) Restricted, anisotropic diffusion and anisotropic nuclear spin relaxation of protons in hydrated vermiculate crystals: J. Colloid Interface Sci. 26, 271278.CrossRefGoogle Scholar
Calvert, R. (1971) Properties of montmorillonite: role of the interactions between interlayer cations and water molecules: Bull. Groupe Fr. Argiles 23, 181190.Google Scholar
Calvert, R. (1975) Dielectric properties of montmorillonites saturated with bivalent cations: Clays & Clay Minerals 23, 257265.CrossRefGoogle Scholar
Fripiat, J. J. (1977) Mobility of physically adsorbed hydroxylic molecules in surfaces made from oxygen atoms: J. Colloid Interface Sci. 58, 511520.CrossRefGoogle Scholar
Greene-Kelly, R. (1955) An unusual montmorillonite complex: Clay Miner. Bull. 2, 226232.CrossRefGoogle Scholar
Hecht, A. M., Dupont, M. and Ducros, P. (1966) Study of the transport of adsorbed water in certain clay minerals by NMR: Bull. Soc. Fr. Mineral. Cristallogr. 89, 613.Google Scholar
Hecht, A. M. and Geissler, E. (1970) Nuclear magnetic resonance and relaxation of adsorbed water in synthetic fluor-montmorillonite: J. Colloid Interface Sci. 34, 3235.CrossRefGoogle Scholar
Hougardy, J., Serratosa, J. M., Stone, W. and Van Olphen, H. (1970) Interlayer water in vermiculite: thermodynamic properties, packing density, nuclear pulse resonance, and infra-red absorption: Spec. Discuss. Faraday Soc. 58, 187193 and 204–205.CrossRefGoogle Scholar
Hunter, R. J., Stirling, G. C. and White, J. W. (1971) Water dynamics in clays by neutron spectroscopy: Nature (London) Phys. Sci., 230, 192194.CrossRefGoogle Scholar
Olejnik, S., Stirling, G. C. and White, J. W. (1970) Neutron scattering studies of hydrated layer silicates: Spec. Discuss. Faraday Soc., 58, 194201.CrossRefGoogle Scholar
Olejnik, S. and White, J. W. (1972) Thin layers of water in vermiculites and montmorillonites—modification of water diffusion: Nature (London) Phys. Sci. 236, 1516.CrossRefGoogle Scholar
Springer, T. (1972) Quasielastic Neutron Scattering for the Investigation of Diffusive Motions in Solids and Liquids: Springer Tracts in Modern Physics No. 64, Springer Verlag, Berlin.CrossRefGoogle Scholar
Touillaux, R., Salvador, P., Vandermeersche, C. and Fripiat, J. J. (1968) Study of water layers adsorbed on sodium and calcium montmorillonite by the pulsed nuclear magnetic resonance technique: Isr. J. Chem. 6, 337348.CrossRefGoogle Scholar
White, J. W. (1972) Some applications of inelastic neutron scattering spectroscopy to surface chemistry and catalysis: Neutron Inelastic Scattering Proc. Symp., IAEA, Vienna, 315344.Google Scholar