Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T09:14:37.068Z Has data issue: false hasContentIssue false

Differential Scanning Calorimetric study of the Kaolinite: N-Methylformamide Intercalate

Published online by Cambridge University Press:  01 July 2024

J. M. Adams*
Affiliation:
Edward Davies Chemical Laboratories, University College of Wales Aberystwyth, Dyfed, SY23 1NE, Wales
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The thermal decomposition of the kaolinite: N-methylformamide intercalate [Al2Si2O5(OH)4·HCONHCH3] has been studied by differential scanning calorimetry (DSC). The decomposition starts at 355 K, finishes at 450 K and follows Avrami-Erofeev kinetics for α = 0.04–0.96. ΔH for the loss of organic is 19 ± 2 kJ mol−1; the activation energy for the reaction is 30 ± 3 kJ mol−1.

Резюме

Резюме

С помощью термического разложения каолинита изучались прослойки N-метилформамида (Al2Si2O5(OH)4 · HCONHCH3) методом дифференциальной развертывающей калориметрии. Разложение начинается при 355°dgК, заканчивается при 450°К и следует кинетике Аврами-Ерофеева для α =0,04-0,96. ΔH В связи с потерей органики равно 19±2 кдж мол-1. Энергия активации для реакции равна 30±3 кдж мол-1

Kurzreferat

Kurzreferat

Der thermische Zerfall des Kaoliniten: N-methylformamidzwischengelagert (Al2Si2O5(OH)4 HCONHCH3) ist mit Differentialkalorimetrie untersucht worden. Der Zerfall beginnt bei 355 K, endet bei 450 K und folgt Avrami-Erofeev Kinetik für α= 0,04–0,96.Δ H für den Verlust von organischen Material ist 19 ±2KJ Mol−1.Die Aktivierungsenergie für die Reaktion ist 30 ±3KJ Mol−1.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

References

Adams, J. M. and Jefferson, D. A. (1976) The crystal structure of a dickite: formamide intercalate (Al2Si2O5(OH)4·HCONH2): Acta Crystallogr. B32, 11801183.CrossRefGoogle Scholar
Cruz, M., Laycock, A. and White, J. L. (1970) Perturbation of OH groups in intercalated kaolinite donor-acceptor complexes—I. Formamide-, methyl formamide- and dimethyl formamide-kaolinite complexes: Proc. Int. Clay Conf. Tokyo, Vol. 1, pp. 775789.Google Scholar
Gawley, A. K. and Jacobs, P. W. M. (1960) Thermal decomposition of ammonium perchlorate at low temperature: Proc. Roy. Soc. London A254, 455469.Google Scholar
Guarini, G. G. T. and Spinicci, R. (1972) DSC study of the kinetics of thermal dehydration of BaCl2·2H2O and BaCl2·H2O: J. Therm. Anal. 4, 435450.CrossRefGoogle Scholar
Hach-Ali, P. F. and Weiss, A. (1969) Estudio de la reaccion de caolinita y N-metilformamida: An. Soc. Quim. Argent. 65, 769790.Google Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P. (1970) The intercalation of polar organic compounds into kaolinite: Clay Miner. 8, 421434.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P. (1971) Infrared spectrum of the kaolinite-pyridine N-oxide complex: Spectrochim. Acta 27A, 20052009.CrossRefGoogle Scholar
Riekel, C. and Schöllhorn, R. (1976) A neutron diffraction study on the intercalation of ammonia into tantalum disulphide: Mater. Res. Bull. 11, 369376.CrossRefGoogle Scholar
Theng, B. K. G. (1974) The Chemistry of Clay–Organic Reactions: Adam Hilger, London.Google Scholar
Thomas, J. M. and Clarke, T. A. (1968) The evaluation of kinetic parameters from thermoanalytical techniques. Dehydration of manganous formate dihydrate: J. Chem. Soc. A, 457460.Google Scholar
Weiss, A., Thielepape, W., Göring, G., Ritter, W. and Shäfer, H. (1963) Kaolinit-Einlagerungs-Verbindungen: Proc. Int. Clay Conf. Stockholm, Vol. 1, pp. 287305.Google Scholar
Weiss, A., Thielepape, W. and Orth, H. (1966) Neue Kaolinit-Einlagerungsverbindungen: Proc. Int. Clay Conf. Jerusalem, Vol. 1, pp. 277293.Google Scholar