Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-15T22:36:24.714Z Has data issue: false hasContentIssue false

Differential Scanning Calorimetric study of the Kaolinite: N-Methylformamide Intercalate

Published online by Cambridge University Press:  01 July 2024

J. M. Adams*
Affiliation:
Edward Davies Chemical Laboratories, University College of Wales Aberystwyth, Dyfed, SY23 1NE, Wales

Abstract

The thermal decomposition of the kaolinite: N-methylformamide intercalate [Al2Si2O5(OH)4·HCONHCH3] has been studied by differential scanning calorimetry (DSC). The decomposition starts at 355 K, finishes at 450 K and follows Avrami-Erofeev kinetics for α = 0.04–0.96. ΔH for the loss of organic is 19 ± 2 kJ mol−1; the activation energy for the reaction is 30 ± 3 kJ mol−1.

Резюме

Резюме

С помощью термического разложения каолинита изучались прослойки N-метилформамида (Al2Si2O5(OH)4 · HCONHCH3) методом дифференциальной развертывающей калориметрии. Разложение начинается при 355°dgК, заканчивается при 450°К и следует кинетике Аврами-Ерофеева для α =0,04-0,96. ΔH В связи с потерей органики равно 19±2 кдж мол-1. Энергия активации для реакции равна 30±3 кдж мол-1

Kurzreferat

Kurzreferat

Der thermische Zerfall des Kaoliniten: N-methylformamidzwischengelagert (Al2Si2O5(OH)4 HCONHCH3) ist mit Differentialkalorimetrie untersucht worden. Der Zerfall beginnt bei 355 K, endet bei 450 K und folgt Avrami-Erofeev Kinetik für α= 0,04–0,96.Δ H für den Verlust von organischen Material ist 19 ±2KJ Mol−1.Die Aktivierungsenergie für die Reaktion ist 30 ±3KJ Mol−1.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. M. and Jefferson, D. A. (1976) The crystal structure of a dickite: formamide intercalate (Al2Si2O5(OH)4·HCONH2): Acta Crystallogr. B32, 11801183.CrossRefGoogle Scholar
Cruz, M., Laycock, A. and White, J. L. (1970) Perturbation of OH groups in intercalated kaolinite donor-acceptor complexes—I. Formamide-, methyl formamide- and dimethyl formamide-kaolinite complexes: Proc. Int. Clay Conf. Tokyo, Vol. 1, pp. 775789.Google Scholar
Gawley, A. K. and Jacobs, P. W. M. (1960) Thermal decomposition of ammonium perchlorate at low temperature: Proc. Roy. Soc. London A254, 455469.Google Scholar
Guarini, G. G. T. and Spinicci, R. (1972) DSC study of the kinetics of thermal dehydration of BaCl2·2H2O and BaCl2·H2O: J. Therm. Anal. 4, 435450.CrossRefGoogle Scholar
Hach-Ali, P. F. and Weiss, A. (1969) Estudio de la reaccion de caolinita y N-metilformamida: An. Soc. Quim. Argent. 65, 769790.Google Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P. (1970) The intercalation of polar organic compounds into kaolinite: Clay Miner. 8, 421434.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P. (1971) Infrared spectrum of the kaolinite-pyridine N-oxide complex: Spectrochim. Acta 27A, 20052009.CrossRefGoogle Scholar
Riekel, C. and Schöllhorn, R. (1976) A neutron diffraction study on the intercalation of ammonia into tantalum disulphide: Mater. Res. Bull. 11, 369376.CrossRefGoogle Scholar
Theng, B. K. G. (1974) The Chemistry of Clay–Organic Reactions: Adam Hilger, London.Google Scholar
Thomas, J. M. and Clarke, T. A. (1968) The evaluation of kinetic parameters from thermoanalytical techniques. Dehydration of manganous formate dihydrate: J. Chem. Soc. A, 457460.Google Scholar
Weiss, A., Thielepape, W., Göring, G., Ritter, W. and Shäfer, H. (1963) Kaolinit-Einlagerungs-Verbindungen: Proc. Int. Clay Conf. Stockholm, Vol. 1, pp. 287305.Google Scholar
Weiss, A., Thielepape, W. and Orth, H. (1966) Neue Kaolinit-Einlagerungsverbindungen: Proc. Int. Clay Conf. Jerusalem, Vol. 1, pp. 277293.Google Scholar