Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T08:08:57.543Z Has data issue: false hasContentIssue false

Dielectric Properties of Montmorillonites Saturated by Bivalent Cations

Published online by Cambridge University Press:  01 July 2024

R. Calvet*
Affiliation:
Centre National de la Recherche Agronomique, Versailles, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This study deals with the analysis of dielectric measurements made on montmorillonites saturated by bivalent cations. These measurements are performed between — 150°C and +30°C at frequencies ranging from 300 to 10,000 Hz. Their interpretation is based on a numerical analysis allowing determination of the dielectric losses due to free charge carriers conductivity phenomena and losses due to relaxation phenomena. The free charge carriers conductivity is due to the movement of protons. It depends very much on the nature of compensating cations and on the water content and seems to be closely related to the characteristics of the swelling.

Two types of relaxation phenomenon are described: a Debye relaxation due to electric dipole rotations and a Maxwell-Wagner relaxation due to heterogeneity effects. The analysis of the first phenomenon leads to the examination of the values of the relaxation time. It appears that the rotations of water molecules are difficult with bivalent cations. This essentially is shown by the high activation energy of the phenomenon. The discussion of these parameters shows that the state of adsorbed water molecules are certainly different as compared to the state of water molecules in ice or in liquid water. The characteristics of the second relaxation phenomenon are closely dependent on the free carriers charge conductivity.

Type
Research Article
Copyright
Copyright © 1975, The Clay Minerals Society

References

Anderson, D. M. and Hoekstra, P., (1965) Migration of interlamellar water during freezing and thawing of Wyoming bentonite Soil. Sci. Soc. Am. Proc. 29 498504.CrossRefGoogle Scholar
Anderson, D. M. and Tice, A. R., (1971) Low temperature phases of interfacial water in clay-water systems Soil Sci. Soc. Am. Proc. 35 4754.CrossRefGoogle Scholar
Bottcher, C. J. F., (1952) Theory of Electric Polarisation. Amsterdam Elsevier.Google Scholar
Calvet, R., (1972) Absorption dipolaire et conductivité de l'eau adsorbée sur la montmorillonite calcique Proc. Int. Clay. Conf. .Google Scholar
Calvet, R., (1972) Adsorption de l'eau sur les argiles: étude de l'hydratation de la montmorillonite Bull. Soc. Chim. France. 8 30973104.Google Scholar
Calvet, R., (1973) Hydratation de la montmorillonite et diffusion des cations compensateurs—I: Etude de l'hydratation de la montmorillonite saturée par des cations monovalents Ann. Agron. 24 1 77133.Google Scholar
Calvet, R. and Mamy, J., (1971) Sur la nature des charges responsables de la conductivité électrique des argiles C. R. Acad. Sci. 273 12511253.Google Scholar
Cole, K. S. and Cole, R. H., (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics J. Chem. Phys. 9 341351.CrossRefGoogle Scholar
Eisenberg, D. and Kauzmann, W., (1969) The Structure and Properties of Water. Oxford Clarendon Press.Google Scholar
Freymann, M. and Freymann, R., (1954) Spectre hertzien et structure des solides—II: Absorption Debye de l'eau libre et de l'eau liée J. Physique Radium 15 165175.CrossRefGoogle Scholar
Fripiat, J. J. Jelli, A. Poncelet, G. and Andre, J., (1965) Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas J. Phys. chem. 69 7 21852197.CrossRefGoogle Scholar
Glaeser, R., (1953) Complexes organo-argileux et rôle des cations échangeables Paris Thèse. Fac. Sci..Google Scholar
Glasstone, S. Laidler, K. J. and Eyring, H., (1941) The Theory of Rate Processes. New York McGraw-Hill.Google Scholar
Haggis, G. H. Hasted, J. B. and Buchanan, J. T., (1952) The dielectric properties of water in solutions J. Chem. Phys. 20 9 14521456.CrossRefGoogle Scholar
Kelly, D. J. and Salomon, R. E., (1969) Dielectric behaviour of Na-OH-dopedice J. Chem. Phys. 50 1 7579.CrossRefGoogle Scholar
Mamy, J., (1968) Recherches sur l'hydration de la montmorillonite: propriétés diélectriques et structure du film d'eau Thèse. Fac. Sci .Google Scholar
Mamy, J., (1972) Relations entre les états de l'eau adsorbée par les mica altérés et leurs propriétés diélectriques Proc. Int. Clay. Conf. .Google Scholar
Sillars, R. W., (1937) The properties of a dielectric containing semiconducting particles of various shapes J. Inst. Elect. Engng 80 378394.Google Scholar
Weiler, R. A. and Chaussidon, J., (1968) Surface conductivity and dielectrical properties of montmorillonite gels Clays and Clay Minerals 16 147155.CrossRefGoogle Scholar