Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T13:27:56.606Z Has data issue: false hasContentIssue false

Diagenetic Development of Kaolinite

Published online by Cambridge University Press:  01 July 2024

C. D. Curtis
Affiliation:
Department of Geology, The University, Sheffield S1 3JD, England
D. A. Spears
Affiliation:
Department of Geology, The University, Sheffield S1 3JD, England
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Experimental solubility data for gibbsite and kaolinite are reviewed and applied to the problem of gibbsite stability within the natural environment. It is concluded that free alumina compounds formed (only) in lateritic soils will tend to silicify spontaneously in all sedimentary environments. This metasomatic reaction should be accompanied by massive volume expansion: unusual textures are to be anticipated.

Petrographic and field descriptions of a number of ancient kaolinitic sediments (some with, some without free alumina) are reviewed. It is concluded that silicification of hydrated aluminum oxides was an important mechanism of kaolinite formation in ancient sediments and that free alumina compounds persist only as a result of the unusual volume expansion associated with kaolinite formation.

Résumé

Résumé

Les données concernant la solubilité expérimentale de la gibbsite et de la kaolinite sont passées en revue et appliquées au problème de la stabili’e de la gibbsite dans l’environnement naturel. On en conclut que les composés à alumine libre formés (seulement) dans les sols latéritiques tendront à se silicifier spontanément dans tous les environnements sédimentaires. Cette réaction métasomatique devrait être accompagnée d’une expansion massive du volume: des textures inhabituelles sont donc à attendre.

Les descriptions pétrographiques et de terrain d’un certain nombre de sédiments kaolinitiques anciens (certains avec, certains sans alumine libre) sont passées en revue. On en conclut que la silicification des oxydes d’aluminium hydrat’es a été un mécanisme important pour la formation de kaolinite dans les sédiments anciens, et que les composés à alumine libre persistent seulement en tant que résultat de l’expansion en volume inhabituelle, associée à la formation de kaolinite.

Kurzreferat

Kurzreferat

Es werden experimentelle Lòslichkeitsdaten für Gibbsit und Kaolinit überprüft und auf das Problem der Stabilität von Gibbsit in natürlicher Umgebung angewendet. Es wird der Schluss gezogen, dass (ausschliesslich) in lateritischen Böden gebildete freie Tonerdeverbindungen dazu neigen werden in allen Sedimentärumgebungen spontan zu verkieseln. Eine solche metasomatische Reaktion würde von massiver Volumenausdehnung begleitet werden. Ungewöhnliche Gefüge sind zu erwarten.

Es werden petrographische und Feldbeschreibungen einer Anzahl alter kaolinitischer Sedimente (manche mit, manche ohne freie Tonerde) überprüft. Es wird der Schluss gezogen, dass Verkieselung hydratisierter Aluminiumoxyde ein wichtiger Vorgang bei der Kaolinitbildung in alten Sedimenten war und dass freie Tonerdeverbindungen nur als eine Foloe der ungewöhnlichen, mit der Kaolinitbildung verbundenen Volumenausdehnung weiter vorhanden sind.

Резюме

Резюме

Рассмотрены и применены для решения проблемы устойчивости гиббсита в природной обстановке экспериментальные данные по растворимости гиббсита и каолинита. Сделан вывод, что соединения свободного глинозема, образованные (только) в латеритовых почвах, будут иметь тенденцию к спонтанной силисификации в любой среде в осадках. Эта реакция замещения должна сопровождаться значительным увеличением объема; при этом можно ожидать появления необычных текстур.

Проанализированы петрографические данные и условия залегания ряда древних каолинитовых осадков со свободным глиноземом и без него. Авторы пришли к заключению, что силисификация гидратированных окислов алюминия является важным механизмом образования каолинита в древних осадках и что соединения свободного глинозема сохраняются только благодаря необычному увеличению объема при образовании каолинита.

Type
Research Article
Copyright
Copyright © 1971, The Clay Minerals Society

Footnotes

*

Session 1970/71 visiting: The Department of Geology, University of California, Los Angeles, Calif. 90024, U.S.A.

References

Berner, R. A., (1964) Stability fields of iron minerals in anaerobic marine sediments J. Geol. 72 826834.CrossRefGoogle Scholar
Biscaye, P. E., (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans Bull. Geol. Soc. Am. 76 803832.10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2CrossRefGoogle Scholar
Bouroz, A., (1964) Les composants petrographiques principaux des schistes houillers et leur signification sedimentologique C. R. 5 eCongrès. Intern. Carbonifère. Paris. 1963 289301.Google Scholar
Chukhrov, F. V., (1970) Analogues of flint clays in Soviet literature Clays and Clay Minerals 18 15.CrossRefGoogle Scholar
Curtis, C. D. and Brown, P. E., (1969) The metasomatic development of zoned ultrabasic bodies in Unst, Shetland Contr. Mineral and Petrol. 24 275292.CrossRefGoogle Scholar
Curtis, C. D. and Spears, D. A., (1968) The formation of sedimentary iron minerals Econ. Geol. 63 257270.CrossRefGoogle Scholar
Deer, W. A., Howie, R. A. and Zussman, J. (1962) Rock Forming Minerals. Sheet Silicates Vol. III, Longmans, London.Google Scholar
Eyles, V. A., Simpson, J. B. and MacGregor, A. G., (1949) Geology of Central Ayrshire Mem. Geol. Surv. Gt. Britain .Google Scholar
Foose, R., (1944) High-alumina clays of Pennsylvania Econ. Geol. 39 557577.CrossRefGoogle Scholar
Garrels, R. M. and Christ, C. L., (1965) Solutions, Minerals and Equilibria New York Harper & Row.Google Scholar
Hem, J. D., (1968) Graphical methods for studies of aqueous aluminum hydroxide, fluoride and sulphate complexes U. S. Geol. Surv. Water-supply Paper 1827-B .Google Scholar
Hem, J. D. and Roberson, C. E., (1967) Form and stability of aluminum hydroxide complexes in dilute solution U.S. Geol. Surv. Water-supply Paper 1827-A .Google Scholar
Hess, P. C., (1966) Phase equilibrium of some minerals in the K2O-Na2O-Al2O3-SiO2-H2O system at 25°C and 1 atmosphere Am. J. Sci. 264 289309.CrossRefGoogle Scholar
Keller, W. D., (1968) Flint clay and a flint-clay facies Clays and Clay Minerals 16 113128.CrossRefGoogle Scholar
Korzhinsky, D. S., (1959) Physico-chemical basis of the analysis of the paragenesis of minerals New York Translated from the Russian by Consultants Bureau Inc..Google Scholar
de Lapparent, J., (1936) Boehmite and diaspore in the bauxitic clays of Ayrshire Sum. Prog. Geol. Surv. Gt. Britain for 1934 1.Google Scholar
Price, N. B. and Duff, P. Mc L. D., (1969) Mineralogy and chemistry of tonsteins from Carboniferous sequences in Great Britain Sedimentology 13 4569.CrossRefGoogle Scholar
Reesman, A. L. and Keller, W. D., (1968) Aqueous solubility studies of high-alumina and clay minerals Am. Mineralogist 53 929942.Google Scholar
Reesman, A. L., Pickett, E. E. and Keller, W. D., (1969) Aluminum ions in aqueous solutions Am. J. Sci. 267 99113.CrossRefGoogle Scholar
Richardson, G. and Francis, E. H., (1971) Fragmental clayrocks (F. C. R.) in coal bearing sequences in Scotland and north-east England Proc. Yorks. Geol. Soc. 38 229260.CrossRefGoogle Scholar
Roberson, C. E. and Hem, J. D., (1969) Solubility of aluminum in the presence of hydroxide, fluoride and sulphate U.S. Geol. Surv. Water-supply 37.Google Scholar
Schoen, R. and Roberson, C. E., (1970) Structure of aluminum hydroxides and geochemical implications Am. Mineralogist 55 4377.Google Scholar
Smith, W. H. and O’Brien, N. R., (1965) Middle and late Pennsylvanian flint clays J. Sediment. Petrol. 35 610618.Google Scholar
Spears, D. A., (1970) A kaolinite mudstone (tonstein) in the British coal measures J. Sediment. Petrol. 40 386394.CrossRefGoogle Scholar
Thompson, J. B. and Abelson, P. H., (1959) Local equilibrium in metasomatic processes Researches in Geochemistry New York Wiley.Google Scholar
White, D. E., Hem, J. D. and Waring, G. A., (1963) Chemical composition of subsurface waters. Chapter F, Data of Geochemistry U.S. Geol. Sun. Prof. 67.CrossRefGoogle Scholar
Williams, E. G., (1960) Relationship between the stratigraphy and petrography of Pottsville sandstones and the occurrence of high-alumina Mercer clay Econ. Geol. 55 12911302.CrossRefGoogle Scholar
Williams, E. G., Berbenback, R. E., Falla, W. S. and Udagawa, S., (1968) Origin of some Pennsylvanian underclays in western Pennsylvania J. Sediment. Petrol. 39 11791193.Google Scholar
Williamson, I. A., (1970) Tonsteins —their nature, origins and uses Mining Mag. 122 119125.Google Scholar
Wilson, G. V., (1922) The Ayrshire bauxitic clay Mem. Geol. Surv. Gt. Britain .Google Scholar