Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T01:39:42.983Z Has data issue: false hasContentIssue false

Development of Microporosity in Clinochlore Upon Heating

Published online by Cambridge University Press:  28 February 2024

F. Villieras
Affiliation:
Laboratoire Environnement et Minéralurgie, UA 235 du CNRS, rue du Doyen, Marcel Roubault, BP 40, 54 501 Vandoeuvre les Nancy cedex, France
J. Yvon
Affiliation:
Laboratoire Environnement et Minéralurgie, UA 235 du CNRS, rue du Doyen, Marcel Roubault, BP 40, 54 501 Vandoeuvre les Nancy cedex, France
J. M. Cases
Affiliation:
Laboratoire Environnement et Minéralurgie, UA 235 du CNRS, rue du Doyen, Marcel Roubault, BP 40, 54 501 Vandoeuvre les Nancy cedex, France
P. de Donato
Affiliation:
Laboratoire Environnement et Minéralurgie, UA 235 du CNRS, rue du Doyen, Marcel Roubault, BP 40, 54 501 Vandoeuvre les Nancy cedex, France
F. Lhote
Affiliation:
Centre de Recherches Pétrographiques et Géochimiques, CNRS, 15 rue Notre Dame des Pauvres, BP 20, 54 501, Vandoeuvre les Nancy cedex, France
R. Baeza
Affiliation:
Talc de Luzenac, BP 1162, 31 036, Toulouse cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The “modified chlorite structure” forms by the dehydroxylation of the interlayer octahedral sheet of magnesian chlorite at around 500°C and results in a structure with a basal spacing near 27 Â (Brindley and Chang 1974). This process involves drastic textural modifications as indicated by gas adsorption experiments which reveal the formation of structural micropores. Infrared spectroscopy as well as thermogravimetry and mass spectrometric analysis show that these micropores are filled with molecular atmospheric water, carbon dioxide, nitrogen, argon and hydrocarbons which condense once the samples cool down. A high temperature treatment is needed in order to release the different phases. A heterogeneous dehydroxylation mechanism is proposed in which micropores are formed in donor regions and magnesium and oxygen are concentrated in acceptor regions. This leads to a 27 Å structure with micropore zones and enriched interlayer oxide zones alternating along the z-axis of the mineral.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

References

Anonymous. 1976. Gas Encyclopedia, L'Air Liquide. Amsterdam: Elsevier, 1150 pp.Google Scholar
Bachiorrini, A., and Murat, M.. 1986 . Spectroscopie d'absorption infrarouge appliqué à la caractérisation de l'état d'amorphisation de la métakaolinite, Comptes Rendus de l'Académie des Sciences, Paris, Série II. 303: 17831786.Google Scholar
Bai, T.-B., Guggenheim, S., Wang, S. J., Rancourt, D. G., and Koster Van Groos, A. F.. 1993 . Metastable phase relations in the chlorite H2O system. Amer. Mineral. 78: 12081216.Google Scholar
Ball, M. C., and Taylor, H. F. W.. 1961 . The dehydration of brucite. Mineral. Mag. 32: 754766.Google Scholar
Brindley, G. W., and Ali, S. Z.. 1950 . X-ray study of thermal transformations in some magnesian chlorites minerals. Acta Crystalog. 3: 2530.CrossRefGoogle Scholar
Brindley, G. W., and Chang, T.-S.. 1974 . Development of long basal spacing in chlorites by thermal treatment. Amer. Mineral. 59: 152158.Google Scholar
Brindley, G. W., and Lemaitre, J.. Thermal, oxydation and reduction reactions of clay minerals. In Chemistry of Clays and Clay Minerals. Newman, A. C. D., 1987 ed. London: Mineralogical Society, 319370.Google Scholar
Brunauer, L. S., Deming, L. S., Deming, W. E., and Teller, E.. 1940 . On the theory of the Van der Waals adsorption of gases. J. Amer. Chem. Soc. 62: 17231732.CrossRefGoogle Scholar
Caillère, S., and Hénin, S.. 1960 . Influence des cations structuraux sur la température de déshydroxylation de certains minéraux phylliteux. Bulletin de la Société Française de Céramique 48: 6367.Google Scholar
Delmastro, A., Bachiorrini, A., and Murat, M.. 1989 . Désordre à courte distance dans les phases transitoires resultant de l'activation thermique des montmorillonites. Clay Miner. 24: 4352.CrossRefGoogle Scholar
De Parseval, P., 1992. Etude minéralogique et géochimique du gisement de talc et chlorite de Trimouns. Doctorat de l'Université Paul Sabatier, Toulouse, 214 pp.Google Scholar
Emmet, P. H., and Brunauer, J.. 1937 . The use of low température van der Waals adsorption isotherms in determining the surface area by ion synthetic ammonia catalyst. J. Amer. Chem. Soc. 59: 15531564.CrossRefGoogle Scholar
Escoubes, M., and Karchoub, M.. 1977 . Contribution à l'étude du comportement des ions fer au cours de la déshydroxylation des minéraux argileux. Bulletin de la Société Française de Céramique 114: 4355.Google Scholar
Farmer, V. C., 1974a. In The Infrared Spectra of Minerals. London: Mineralogical Society, 87110.CrossRefGoogle Scholar
Farmer, V. C., 1974b. la The Infrared Spectra of Minerals. London: Mineralogical Society, 357.CrossRefGoogle Scholar
Farmer, V. C., 1974c. In The Infrared Spectra of Minerals. London: Mineralogical Society, 344347.CrossRefGoogle Scholar
Griffiths, P. R., and Haseth, J. S.. 1986 . In Fourier Transform Infrared Spectroscopy. New York: Wiley-Interscience, 544.Google Scholar
Hayashi, H., Otsuka, R., and Imai, N.. 1969 . Infrared study of sepiolite and palygorskite on heating. Amer. Mineral. 53: 16131624.Google Scholar
Heller, L., Farmer, V. C., Mackenzie, R. C., Mitchell, B. D., and Taylor, H. F. W.. 1962 . The dehydroxylation and rehydroxylation of trimorphic dioctahedral clay minerals. Clay Miner. 28: 5672.CrossRefGoogle Scholar
Kim, M. G., Dahmen, U., and Searcy, A. W.. 1987 . Structural transformations in the decomposition of Mg(OH)2 and MgCO3. J. Amer. Ceramic Soc. 70: 146154.CrossRefGoogle Scholar
McClellan, A. L., and Harnsberger, H. F.. 1967 . Cross sectional areas of molecules adsorbed on solid surfaces. J. Colloïd Interface Sci. 23: 577599.CrossRefGoogle Scholar
Michot, L., François, M., and Cases, J. M.. 1990 . Surface heterogeneity studied by a quasiequilibrium gas adsorption procedure. Langmuir 6: 677681.CrossRefGoogle Scholar
Naono, H., 1989. Micropore formation due to thermal decomposition of magnesium hydroxyde. Colloids and Surfaces 37: 5570.CrossRefGoogle Scholar
Plançon, A., and Tchoubar, C.. 1976 . Etude des fautes d'empilement dans les kaolinites partiellement désordonnées. II. Modèles d'empilement comportant des fautes de rotation. J. Appl. Crystallog. 9: 279285.CrossRefGoogle Scholar
Riebeiro Carrott, M. M. L., Carrott, P. J. M., Brotas de Carvalho, M. M., and Sing, K. S. W.. Microstructure of ex-hydroxyde magnesium oxyde and products of rehydration. In Characterization of Porous Solids II. Rodriguez-Reinoso, F., Rouquerol, J., Sing, K. S. W., and Unger, K. K., 1991 eds. Amsterdam: Elsevier, 635643.Google Scholar
Sabatier, G., 1950. Sur l'influence de la dimension des cristaux de chlorites sur leurs courbes d'analyse thermique différentielle. Bulletin de la Société Française de Minéralogie et de Cristallographie 73: 4348.CrossRefGoogle Scholar
Shirozu, H., 1980. Cation distribution, sheet thickness, and O-OH space in trioctahedral chlorites—An X-ray and infrared study. Mineral. J. 10: 1434.CrossRefGoogle Scholar
Shirozu, H., 1985. Infrared spectra of trioctahedral chlorites in relation to chemical composition. Clay Sci. 6: 167176.Google Scholar
Shirozu, H., and Ishida, K.. 1982 . Infrared study of some 7 Å and 14 Å layer silicates by deuteration. Mineral. J. 11: 161171.CrossRefGoogle Scholar
Villiéras, F., 1993. Etude des modifications des propriétés du talc et de la chlorite par traitement thermique. Doctorat de l'Institut National Polytechnique de Lorraine, Nancy, 568 pp.Google Scholar
Weiss, E. J., and Rowland, R. A.. 1956 . Oscillating-heating X-ray diffractometer studies of clay mineral dehydroxylation. Amer. Miner. 41: 117126.Google Scholar
Zimmermann, J.-L., Jambon, A., and Guyetand, G.. 1988 . Manometric and mass spectrometric analysis of fluids in geological materials. Geochem. J. 22: 921.CrossRefGoogle Scholar