Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T22:42:49.088Z Has data issue: false hasContentIssue false

Determination of Structural Defects in Phyllosilicates by X-Ray Powder Diffraction—I. Principle of Calculation of the Diffraction Phenomenon

Published online by Cambridge University Press:  01 July 2024

A. Plançon
Affiliation:
Laboratoire de Cristallographie, Université d'Orléans et Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite, C.N.R.S., 45045 Orléans Cedex, France
C. Tchoubar
Affiliation:
Laboratoire de Cristallographie, Université d'Orléans et Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite, C.N.R.S., 45045 Orléans Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper describes the calculation of the diffracted intensity for models of powdered minerals with lamellar structure, in order to compare experimental and theoretical X-ray diagrams. The calculation takes into account at the same time (i) the possibility of coexistence of different kinds of layers in the stackings, (ii) the possibility of stacking faults between the layers (translative or rotative ones) and (iii) the unavoidable orientation of particles in the powder sample (the method of determination of the orientation is described).

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1977

References

Brindley, G. W. and Kurtossy, S. (1961) Quantitative determination of kaolinite by X-ray diffraction: Am. Miner. 46, 12051215.Google Scholar
Brindley, G. W. and Mering, J. (1951) Diffraction des rayons X par les structures en couches désordonnées: Acta Cryst. 4, 441447.CrossRefGoogle Scholar
de Courville, J., Tchoubar, C. and Tchoubar, D. (to be published).Google Scholar
Hendricks, S. and Teller, E. (1942) X-ray interference in partially ordered layer lattices: J. Chem. Phys. 10, 147167.CrossRefGoogle Scholar
Kakinoki and Komura (1952) Intensity of X-ray diffraction by one-dimensionally disordered crystal: J. Phys. Soc. Japan 7, 3035.CrossRefGoogle Scholar
Laue, M. (1932) Z. Kristallogr. 82, 127.CrossRefGoogle Scholar
Lippmann, F. (1970) Functions describing preferred orientation in flat aggregates of flake-like clay minerals and in other axially symmetric fabrics: Contrib. Min. Petr. 25, 7794.CrossRefGoogle Scholar
Mering, J. (1949) L'interférence des rayons X dans les systèmes à stratification désordonnée: Acta Cryst. 2, 371377.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C. (1975) Etude des fautes d'empilement dans les kaolinites partiellement désordonnées—I. Modèle ne comportant que des fautes par translation: J. Appl. Cryst. 8, 582588.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C. (1976) Etude des fautes d'empilement dans les kaolinites partiellement désordonnées—II. Modèle comportant des fautes par rotation: J. Appl. Cryst. 9, 279285.CrossRefGoogle Scholar
Plançon, A., Besson, G., Pons, C. H. and Tchoubar, C. (to be published) J. Appl. Crystallogr.Google Scholar
Taylor, R. M. and Norrish, K. (1966) The measurement of orientation distribution and its application to quantitative X-ray diffraction analysis: Clay Miner. 6, 127141.CrossRefGoogle Scholar
Warren, B. E. (1941) X-ray diffraction in random layer lattices: Phys. Rev. 59, 693699.CrossRefGoogle Scholar
Wilson, A. J. C. (1949a) X-ray diffraction by random layers: ideal line profiles and determination of structure amplitudes from observed line profiles: Acta Cryst. 2, 245251.CrossRefGoogle Scholar
Wilson, A. J. C. (1949b) X-Ray Optics: Methuen, London.Google Scholar
Zernicke, F. and Prins, J. (1927) Z. Physik 41, 184.CrossRefGoogle Scholar