Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T17:06:43.907Z Has data issue: false hasContentIssue false

Destinezite (“Diadochite”), Fe2(PO4)(SO4)(OH)·6H2O: Its Crystal Structure and Role as a Soil Mineral at Alum Cave Bluff, Tennessee

Published online by Cambridge University Press:  28 February 2024

Donald R. Peacor
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
Roland C. Rouse
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
T. Dennis Coskren
Affiliation:
6324 Sandchain Road, Columbia, Maryland 21045, USA
Eric J. Essene
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new occurrence of destinezite (diadochite), ideally Fe2(PO4)(SO4)(OH)·6H2O, is described from Alum Cave Bluff, Great Smoky Mountains National Park, Tennessee, where it occurs in soil and in a weathered Precambrian phyllite in unusually large crystals associated with other hydrated sulfates such as pickeringite-apjohnite. Destinezite is triclinic, P1̄, with a = 9.570(1), b = 9.716(1), c = 7.313(1) Å, α = 98.74(1)°, β = 107.90(1)°, γ = 63.86(1)° and Z = 2. Its crystal structure consists of infinite chains of Fe(O,OH,H2O)6 octahedra, sulfate tetrahedra and phosphate tetrahedra linked by a unique system of vertex sharing. The chains are weakly bonded into slabs by hydrogen bonding between OH and H2O of the Fe(III) octahedra and oxygen ions of the sulfate tetrahedra. Slabs of tetrahedral/octahedral chains alternate with sheets of H2O molecules. The structure thus somewhat resembles hydrated clay minerals, with H2O molecules that act as hydrogen bond donors and acceptors to oxygen atoms of adjacent slabs. Destinezite and diadochite occur at numerous localities worldwide and have been assumed to be identical, but this identity has never been proven. It is proposed that the name “destinezite” be applied to visibly crystalline, triclinic Fe2(PO4)(SO4)(OH)·6H2O and “diadochite” to massive to earthy, poorly ordered, X-ray amorphous materials that approximate destinezite in composition. Diadochite/destinezite may be an unrecognized component of soils where weathering of pyrite and apatite has occurred and pH is low. It may thus be a significant sink for phosphorus and sulfur in such soils.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

Footnotes

Contribution No. 506. The Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109, USA.

References

Ankinovich, E.A., 1958 Diadokhit iz vanadienosnikh slantsev Severo-Zapadnogo Karatau Izv Akad Nauk Kaz SSR, Ser Geol 3 7983.Google Scholar
Brese, N.E. and O’Keeffe, M., 1991 Bond-valence parameters for solids Acta Crystallogr B47 192197 10.1107/S0108768190011041.CrossRefGoogle Scholar
Cesàro, G., 1885 Étude chimique et cristallographique de la destinézite (diadochite de Visé) Ann Soc Géol Belg, Mém 12 173191.Google Scholar
Cesàro, G., 1897 Description des minéraux phosphatés, sulfatés et carbonatés du sol belge Mém Acad R Sci Lett Beaux-Arts Belg 53 1136.Google Scholar
Chiari, G. and Ferraris, G., 1982 The water molecule in crystalline hydrates studied by neutron diffraction Acta Crystallogr B38 23312341 10.1107/S0567740882008747.CrossRefGoogle Scholar
Clark, A.M., 1993 Hey’s mineral index: Mineral species, varieties and synonyms London Chapman & Hall 177178.Google Scholar
Coskren, T.D. and Lauf, R., 1996 Secondary sulfates of Alum Cave Bluff, Great Smoky Mtns., Tennessee Rocks and Minerals 71 192193.Google Scholar
Fleischer, M. and Mandarino, J.A., 1995 Glossary of mineral species 1995 Tucson, AZ The Mineralogical Record 5253.Google Scholar
Földvári, M. and Nagy, B., 1985 Diadochit és desztinezit Mátrasz-entimrérél Földt Közl 115 123131.Google Scholar
German, L.D., 1956 O destinezite v zone okisleniya kolche-dannogo mestorozhdeniya Blyava na Yuzhnom Urale Zap Vses Mineral O-va 85 574577.Google Scholar
Hausen, D., 1962 Cited as a private communication on Powder Diffraction File Card 12–209 .Google Scholar
Hintze, C., 1933 Handbuch der Mineralogie Berlin Walter De Gruyter 10711074.Google Scholar
Jago, W.K., 1989 Geochemical assessment of acid drainage in the Blue Ridge Province of Tennessee and North Carolina [M.S. thesis] Knoxville, TN Univ of Tennessee.Google Scholar
Jarkovský, J. and Číčel, B., 1958 Výskyt diadochitu v Banskej Belej Geol Práce, Zprávy 13 97104.Google Scholar
Larsen, E.S., 1921 The microscopic determination of the nonopaque minerals US Geol Surv Bull 679 67.Google Scholar
Lindsay, W.L. Vlek, P.L.G. Chien, S.H., Dixon, J.B. and Weed, S.B., 1989 Phosphate minerals Minerals in soil environments Madison, WI Soil Science Society of America 10891130.Google Scholar
Mereiter, K., 1979 Die Kristallstruktur von Mangan (III)-hy-droxid-sulfat-Dihydrat, Mn(OH)SO4.2H2O Acta Crystallogr B35 579585 10.1107/S0567740879004192.CrossRefGoogle Scholar
Moiseeva, M.I., 1967 O nakhodke destinezita v Kuraminskom Khrebte Dokl Akad Nauk Uzb SSR 9 4547.Google Scholar
Moiseeva, M.I., 1970 Mineralogiya kori vivetrivaniya Kura-minskogo khrebta i usloviya ee obrazovaniya Zap Uzb Otd Vses Mineral O-va 23 4654.Google Scholar
North, A.C.T. Phillips, D.C. and Mathews, F.S., 1968 A semi-empirical method of absorption correction Acta Crystallogr A24 351359 10.1107/S0567739468000707.CrossRefGoogle Scholar
Palache, C. Berman, H. and Frondel, C., 1951 The system of mineralogy New York J. Wiley 10111013.Google Scholar
Scordari, F., 1981 Fibroferrite: A mineral with a (Fe(OH)(H2O)2SO4) spiral chain and its relationship to Fe(OH)SO4, butlerite and parabutlerite Tschermaks Mineral Petrogr Mitt 28 1729 10.1007/BF01081848.CrossRefGoogle Scholar
Süsse, P., 1968 Die Kristallstruktur des Botryogens Acta Crystallogr B24 760767 10.1107/S0567740868003171.CrossRefGoogle Scholar
Süsse, P., 1971 Kristallchemie und Klassifikation der natürlichen Ferrisulfate Fortschr Mineral 49 119121.Google Scholar
Süsse, P., 1972 Crystal structure and hydrogen bonding of copiapite Z Kristallogr 135 3455 10.1524/zkri.1972.135.1-2.34.CrossRefGoogle Scholar
van Tassel, R., 1985 Minéraux phosphatés secondaires (vash-egyite, destinézite, wavellite, crandallite, phosphate der fer) à Haut-le-Wastia, province de Namur (Belgique) Bull Soc Belge Géol 94 1927.Google Scholar
Veselý, V.. 1922. Chemické složení nerostů z Chvaletic a Litošic. Rozpravy České Akad, Tr II 31: No 9 [Chem Abstr 18:34].Google Scholar
Walker, N. and Stuart, D., 1983 An empirical method for correcting diffractometer data for absorption effects Acta Crystallogr A39 158166 10.1107/S0108767383000252.CrossRefGoogle Scholar