Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T18:22:19.788Z Has data issue: false hasContentIssue false

Deferration Effect on Structural Ferrous-Ferric Iron Ratio and CEC of Vermiculites and Soils

Published online by Cambridge University Press:  01 July 2024

C. B. Roth
Affiliation:
Department of Soil Science, University of Wisconsin, Madison, Wisc. 53706
M. L. Jackson
Affiliation:
Department of Soil Science, University of Wisconsin, Madison, Wisc. 53706
J. K. Syers
Affiliation:
Department of Soil Science, University of Wisconsin, Madison, Wisc. 53706
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Deferration by reduction of free Fe2O3 with Na2S2O4 in the presence of Na citrate and NaHCO3 caused a change in valence state of 10 to 35 per cent of the total structural iron in micaceous vermiculites, soils, nontronite, and muscovite. An increase in Fe2+ on deferration was accompanied by an equivalent decrease in Fe3+. Subsequent treatment with H2O2 reoxidized the structural Fe2+ previously formed.

Sesquioxide coatings on micaceous vermiculites were examined electron microscopically. These coatings were composed predominantly of Fe2O3 with approximately 10 per cent by weight of Al2O3 and small amounts of SiO2, as determined by chemical analysis of the deferration extracts.

The cation exchange capacity (CEC) increased 10–60 per cent as a result of deferration of micaceous vermiculites and soils. Treatment of the deferrated sample with H2O2 restored the Fe3+ content to approximately the original value but the CEC was not affected. Consequently, the increase in CEC on deferration was attributed to the removal of the positively charged sesquioxide coating. The reversible change in valence of structural iron without an equivalent change in CEC was attributed to deprotonation-protonation of the structure (OH ⇄ O2−) simultaneous with the oxidation-reduction of iron (Fe2+ ⇄ Fe3+) in the phyllosilicate layer.

Résumé

Résumé

La déferrisation par réduction de Fe2O3 libre avec Na2S2O4 en présence de citrate de Na et NaHCO3 a entraîné une modification de 10–35 pour cent de la valence de l’ensemble du fer structurel dans le muscovite. Un accroissement en Fe2+ sur la déferrisation s’est accompagnée d’une diminution équivalente en Fe3+. Un traitement ultérieur avec H2O2 a permis de réoxyder le Fe2+ préalablement formé. Les couches sesquioxydes sur les vermiculites micacés ont été examinées au microscope électronique. Ces couches se composaient surtout de Fe2O3 avec environ 10 pour cent en poids de A12O3 et de petites quantités de SiO2, comme l’avait déterminé l’analyse chimique des extraits de déferrisation. La capacité d’échange de cations (CEC) a marqué une hausse de 10–60 pour cent à la suite de la déferrisation des vermiculites micacés et des sols. Le traitement de l’échantillon déferrisé avec H2O2 a restauré la teneur de Fe3+ à une valeur proche de celle d’origine, mais le CEC n’était pas affecté. En conséquence, l’augmentation de CeC sur la déferrisation a été attribuée à la disparition de la couche sesquioxyde à charge positive. Le changement réversible de la valence du fer structurel sans un changement similaire en CEC a été causé par la déprotonation-protonation de la structure (OH- ⇌ O2−) en même temps que la réduction-oxydation du fer (Fe2+ ⇋ Fe3+) dans la couche phyllosilicate.

Kurzreferat

Kurzreferat

Die Enteisenung durch Reduktion von freien Fe2O3 mit Na2S2O4 in Gegenwart von Na Citrat und NaHCO3 bewirkte eine Änderung im Valenzzustand von 10 ois 35% des gesamten Struktureisens in glimmerartigen Vermiculiten, Boden, Nontronit und Muskovit. Einer Zunahme an Fe2+ bei Enteisenung entsprach eine gleichwertige Abnahme an Fe3+. Nachträgliche Behandlung mit H2O2 führte zu Reoxydation der zuvor gebildeten Struktur-Fe2+.

Sesquioxydbeschichtungen auf glimmerartigen Vermiculiten wurden mit dem Elektronenmikroskop geprüft. Diese Beschichtungen bestanden vorwiegend aus Fe2O3 mit etwa 10 Gewichtsprozent A12O3 und kleinen Mengen SiO2, wie dies durch chemische Analyse der Enteisenungextrakte erwiesen wurde.

Die Kationenaustauschleistung (CEC) stieg um 10–60% in Folge der Enteisenung von glimmerartigen Vermiculiten und Boden. Die Behandlung der enteisenten Probe mit H2O2 stellte den Fe3+ Gehalt auf etwa den ursprünglichen Wert wieder her, doch die Kationenaustauschleistung war dadurch nicht berührt. Die Erhöhung der Kationenaustauschleistung bei Enteisenung wurde daher auf die Entfernung der positiv geladenen Sesquioxydbeschichtung zurückgeführt. Die umkehrbare Änderung in der Valenz des Struktureisens ohne gleichwertige Änderung der Kationenaustauschleistung wurde auf Entprotonisierung-Protonisierung der Struktur (OH ⇌ O2−) gleichzeitig mit der Oxydationsreduktion des Eisens (Fe2+ ⇌ Fe3+) in der Phyllosilikatschicht zurückgeführt.

Резюме

Резюме

Удаление путем восстановления свободной окиси железа с помощью Nа2S2О4 в присутствии цитрата и бикарбоната натрия вызвало изменение валентного состояния от 10 до 35% всего структурного железа в слюдоподобных вермикулитах, почвах, нонтроните и мусковите. Увеличение содержания Fе2+ сопровождалось эквивалентным уменьшением содержания Fе3+. При последующей обработке перекисью водорода структурное Ре2+ вновь переходило в Ре3+.

Пленки полуторных окислов на частицах слюдподобных вермикулитов изучались с помощью электронного микроскопа. Эти пленки в основном состоят из окиси железа; в них содержится также около 10% глинозема и небольшие количества кремнезема (данные химических анализов вытяжек). Емкость катионного обмена слюдоподобных вермикулитов и почв после извлечения свободной окиси железа возрастала с 10 до 60%. Обработка образца, из которого была извлечена свободная окись железа, перекисью водорода вызывала возра¬стание содержания структурного Ре3+ до исходной величины, но емкость катионного обмена при этом не менялась. Следовательно, увеличение емкости катионного обмена при извлечении свободной окиси железа вызвано удалением пленок положительно заряженных полуторных окислов. Обратимый характер изменения валентности структурного железа без эквива¬лентного изменения емкости катионного обмена объясняется потерей или приобретением структурой протонов (ОН⇆О2−) одновременно с окислением или восстановлением железа (Fе2+⇆Fе3+) в филлосиликатном слое.

Type
Correction
Copyright
Copyright © 1969, The Clay Minerals Society

Footnotes

An erratum to this article is available online at https://doi.org/10.1346/CCMN.1970.0180309.

References

Acknowledgments — This work was supported in part by of iron in hydroxylated silicates: Clays and Clay Minerals 11, 95104.Google Scholar
Addison, W. E. and White, A. D. (1968) The oxidation of Bolivian crocidolite: Minerai Mag. 36, 791796.Google Scholar
Alexiades, C. A. and Jackson, M. L. (1967) Chlorite determination in clays of soils and mineral deposits: Am. Mineralogist 52, 18551873.Google Scholar
Brindley, G. W. and Youell, R. F. (1953) Ferrous chamosite and ferric chamosite: Mineral. Mag. 30, 5770.Google Scholar
Chaudhry, I. A. and Cornfield, A. H. (1966) The determination of total sulphur in soil and plant material: Analyst 91, 528530.CrossRefGoogle Scholar
Clark, J. S., Brydon, J. E. and Farstad, L. (1963) Chemical and clay mineralogical properties of the concretionary brown soils of British Columbia, Canada: Soil Sci. 95, 344352.CrossRefGoogle Scholar
Davidtz, J. S. and Sumner, M. E. (1965) Blocked charges on clay minerals in sub-tropical soils: J. Soil Sci. 16, 270274.CrossRefGoogle Scholar
Deshpande, T. L., Greenland, D. J. and Quirk, J. P. (1968) Changes in soil properties associated with the removal of iron and aluminium oxides: J. Soil Sci. 19, 108122.CrossRefGoogle Scholar
de Villiers, J. ML and Jackson, M. L. (1967) Aluminous chlorite origin of pH-dependent cation exchange capacity variations: Soil Sci. Soc. Am. Proc. 31, 614619.CrossRefGoogle Scholar
de Villiers, J. M. and van Rooyen, T. H. (1967) Solid solution formation of lepidocrocite-boehmite and its occurrence in soil: Clay Minerals 7, 229235.CrossRefGoogle Scholar
Follett, E. A. S. (1965) The retention of amorphous, colloidal ‘ferric hydroxide’ by kaolinite: J. Soil Sci. 16, 334341.CrossRefGoogle Scholar
Greenland, D. J., Oades, J. M. and Sherwin, T. W. (1968) Electronmicroscope observations of iron oxides in some red soils: J. Soil Sci. 19, 123126.CrossRefGoogle Scholar
Jackson, M. L. (1956) Soil Chemical Analysis-Advanced Course, 4th printing, 1968. Published by author, University of Wisconsin, Madison, pp. 4758.Google Scholar
Lutz, J. F. (1936) The relation of free iron in the soil to aggregation: Soil Sci. Soc. Am. Proc. 1, 4345.CrossRefGoogle Scholar
Newman, A. C. D. and Brown, G. (1966) Chemical changes during the alteration of micas: Clay Minerals 6, 297310.CrossRefGoogle Scholar
Raman, K. V. and Jackson, M. L. (1964) Vermiculite surface morphology: Clays and Clay Minerals 12, 423429.Google Scholar
Rich, C. I. (1968) Hydroxy interlayers in expansible layer silicates: Clays and Clay Minerals 16, 1530.CrossRefGoogle Scholar
Roth, S. V., Jackson, M. L., de Villiers, J. M. and Volk, V. V. (1967) Surface colloids on micaceous vermiculite: Soil Chemistry and Soil Fertility, (Edited by Jacks, G. V.). Trans. Comm. II and IV, Intern. Soc. Soil Sci., Aberdeen. Intl. Soc. Soil Sci. publ., pp. 217221.Google Scholar
Roth, S. V., Jackson, M. L., Lotse, E. G. and Syers, J. K. (1968) Ferrous-ferric ratio and CEC changes on deferration of weathered micaceous vermiculite: Israel J. Chem. 6, 261273.CrossRefGoogle Scholar
Schellmann, W. (1959) Experimentelle Untersuchungen über die sedimentäre Bildung von Goethit und Hämatit: Chem. Erde 20, 104135.Google Scholar
Schwertmann, U. (1966) Inhibitory effect of soil organic matter on the crystallization of amorphous ferric hydroxide: Nature 212, 645646.CrossRefGoogle Scholar
Sherman, G. D., Matsusaka, Y., Ikawa, H. and Uehara, G. (1964) The role of the amorphous fraction in the properties of tropical soils: Agrochimica 8, 146163.Google Scholar
Sumner, M. E. (1963) Effect of iron oxides on positive and negative charges in clays and soils: Clay Minerals Bull. 5, 218226.CrossRefGoogle Scholar
Taylor, R. M. and Graley, A. M. (1967) The influence of ionic environment on the nature of iron oxides in soils: J. Soil Sci. 18, 341348.CrossRefGoogle Scholar
Tweneboah, C. K., Greenland, D. J. and Oades, J. M. (1967) Changes in charge characteristics of soils after treatment with 0-5M calcium chloride at pH 1-5: Aust. J. Soil Res. 5, 247261.CrossRefGoogle Scholar
Weaver, R. M., Syers, J. K. and Jackson, M. L. (1968) Determination of silica in citrate-bicarbonate-dithionite extracts of soils: Soil Sci. Soc. Am. Proc. 32, 497501.CrossRefGoogle Scholar