Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T22:14:10.387Z Has data issue: false hasContentIssue false

Decomposition of X-Ray Diffraction Patterns: A Convenient Way to Describe Complex I/S Diagenetic Evolution

Published online by Cambridge University Press:  28 February 2024

Bruno Lanson
Affiliation:
Laboratoire de Géologie, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
Bruce Velde
Affiliation:
Laboratoire de Géologie, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Decomposition of complex X-ray diffraction profiles is used on well characterized (image analysis of transmission electron micrographs, X-ray fluorescence chemical analyses) diagenetic samples from the Paris basin. The simultaneous occurrence of three “illitic” phases (mixed-layer illite/smectite or I/S, poorly crystallized illite, and mica-like phase) is shown on the various diffraction peaks of the 2–50 °2θ CuKα (44–1.8 Å) range. However, because of theoretical and experimental constraints, it is easier to perform the decomposition routine in the 5–11 °2θ CuKα (17.6–8.0 Å) range. The identification (i.e., illite content and mean coherent scattering domain size) of the various phases is performed by comparing the associated elementary peak characteristics (position, full width at half maximum intensity) with simulated X-ray patterns. When available, the characteristics obtained from the various angular regions are mutually consistent; however, the precise structures of smectite and illite end-members, on the one hand, and the structure of I/S crystallites, on the other hand, are not well known. Consequently, on some angular regions, there is a discrepancy between the characteristics obtained on experimental and calculated X-ray profiles. The definition of more realistic simulation hypotheses for I/S minerals, and for other interstratified clay minerals, would make this powerful and reliable tool to describe X-ray patterns a precise and sensitive identification tool even for complex clay parageneses.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

Footnotes

In this paper, the word “phase” describes a population of particles whose physicochemical characteristics vary about a mean value. It is assumed that this population behaves as a monophasic material (in a thermodynamic sense) having the same mean characteristics. Consequently this word is used in the thermodynamic sense throughout the paper for this material.

References

Ben Hadj-Amara, A., Besson, G. and Tchoubar, C., 1987 Caractéristiques structurales d’une smectite dioctaédrique en fonction de l’ordre-désordre dans la distribution des charges électriques: I. Etudes des réflexions 001 Clay Miner. 22 305318 10.1180/claymin.1987.022.3.05.CrossRefGoogle Scholar
Besson, G., 1980 Structures des smectites dioctaédriques. Paramètres conditionnant les fautes d’empilement des ferullets .Google Scholar
Bouchet, A., Lajudie, A., Rassineux, F., Meunier, A. and Atabek, R., 1992 Mineralogy and kinetics of alteration of a mixed-layer kaolinite/smectite in nuclear waste disposal simulation experiment (Stripa site, Sweden) Appl. Clay Sci. 7 113123 10.1016/0169-1317(92)90033-J.CrossRefGoogle Scholar
Corbato, C. E. and Tettenhorst, R. T., 1987 Analysis of illite-smectite interstratification Clay Miner. 22 269285 10.1180/claymin.1987.022.3.02.CrossRefGoogle Scholar
Drits, V. A., Tchoubar, C., Besson, G., Bookin, A. S., Rousseaux, F., Sakharov, B. A. and Tchoubar, D., 1990 X-ray Diffraction by Disordered Lamellar Structures: Theory and Applications to Microdivided Silicates and Carbons Berlin Springer-Verlag 10.1007/978-3-642-74802-8.CrossRefGoogle Scholar
Francu, J., Rudinec, R. and Simanek, V., 1989 Hydrocarbon generation zone in the east Slovakian Neogene basin: Model and geochemical evidence Geol. Carpath. 40 355384.Google Scholar
Freed, R. L. and Peacor, D. R., 1989 Variability in temperature of the smectite/illite reaction in Gulf Coast sediments Clay Miner. 24 171180 10.1180/claymin.1989.024.2.05.CrossRefGoogle Scholar
Güven, N., 1991 On a definition of illite/smectite mixed-layer Clays & Clay Minerals 39 661662 10.1346/CCMN.1991.0390613.CrossRefGoogle Scholar
Howard, S. A. and Preston, K. D., 1989 Profile fitting of powder diffraction patterns Modern Powder Diffraction, Reviews in Mineralogy 20 217275 10.1515/9781501509018-011.CrossRefGoogle Scholar
Inoue, A., 1986 Morphological change in a continuous smectite-to-illite conversion series by scanning and transmission electron microscopies J. Coll. Arts & Sci., Chiba Univ. B–19 2333.Google Scholar
Inoue, A., Kohyama, N., Kitagawa, R. and Watanabe, T., 1987 Chemical and morphological evidence for the conversion of smectite to illite Clays & Clay Minerals 35 111120 10.1346/CCMN.1987.0350203.CrossRefGoogle Scholar
Inoue, A., Minato, H. and Utada, M., 1978 Mineralogical properties and occurrence of illite/montmorillonite mixed layer minerals formed from Miocene volcanic glass in Waga-Omono district Clay Sci. 5 123136.Google Scholar
Inoue, A. and Utada, M., 1983 Further investigations of a conversion series of dioctahedral mica/smectites in the Shinzan hydrothermal alteration area, northeast Japan Clays & Clay Minerals 31 401412 10.1346/CCMN.1983.0310601.CrossRefGoogle Scholar
Inoue, A., Velde, B., Meunier, A. and Touchard, G., 1988 Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system Amer. Mineral 73 13251334.Google Scholar
Inoue, A., Watanabe, T., Kohyama, N. and Brusewitz, A. M., 1990 Characterization of illitization of smectite in bentonite beds at Kinnekulle, Sweden Clays & Clay Minerals 38 241249 10.1346/CCMN.1990.0380302.CrossRefGoogle Scholar
Jennings, S. and Thompson, G. R., 1986 Diagenesis of Plio-Pleistocene sediments of the Colorado river delta, southern California J. Sed. Petrol. 56 8998.Google Scholar
Kodama, H., Gatineau, L. and Méring, J., 1971 An analysis of X-ray diffraction line profiles of microcrystalline muscovites Clays & Clay Minerals 19 405413 10.1346/CCMN.1971.0190609.CrossRefGoogle Scholar
Lahann, R. W., 1980 Smectite diagenesis and sandstone cement: The effect of reaction temperature J. Sed. Petrol. 50 755760 10.1306/212F7AD6-2B24-11D7-8648000102C1865D.CrossRefGoogle Scholar
Lanson, B., 1990 Mise en évidence des mécanismes de transformation des interstratifiés illite/smectite au cours de la diagenèse .Google Scholar
Lanson, B., (1992) Application de la decomposition des diffractogrammes de rayons-X à l’identification des minéraux argileux: in Comptes-rendus du collogue rayons-X, Paris 1992, Siemens, , ed., Vol. 2.Google Scholar
Lanson, B. and Besson, G., 1992 Characterization of the end of smectite-to-illite transformation: Decomposition of X-ray patterns Clays & Clay Minerals 40 4052 10.1346/CCMN.1992.0400106.CrossRefGoogle Scholar
Lanson, B. and Champion, D., 1991 The I/S-to-illite reaction in the late stage diagenesis Amer. J. Sci. 291 473506 10.2475/ajs.291.5.473.CrossRefGoogle Scholar
Moore, D. M. and Hower, J., 1986 Ordered interstratification of dehydrated and hydrated Na-smectite Clays & Clay Minerals 34 379384 10.1346/CCMN.1986.0340404.CrossRefGoogle Scholar
Moore, D. M. and Reynolds, R. C. Jr., 1989 X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford Oxford University Press.Google Scholar
Nelder, J. A. and Mead, R., 1965 A simplex method for function minimization Computer J. 7 757769 10.1093/comjnl/7.4.308.CrossRefGoogle Scholar
Plançon, A., Drits, V. A., Sakharov, B. A., Gilan, Z. I. and Ben Brahim, J., 1983 Powder diffraction by layered minerals containing different layers and/or stacking defects. Comparison between Markovian and non-Markovian models J. Appl. Cryst. 16 6269 10.1107/S0021889883009954.CrossRefGoogle Scholar
Pons, C. H., Rousseaux, F. and Tchoubar, D., 1981 Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l’étude du gonflement des smectites: I. Etude du système eau-montmorillonite-Na en fonction de la température Clay Miner. 16 2342 10.1180/claymin.1981.016.1.02.CrossRefGoogle Scholar
Pons, C. H., Rousseaux, F. and Tchoubar, D., 1982 Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l’étude du gonflement des smectites: II. Etude de différents systèmes eau-smectites en fonction de la temperature Clay Miner. 17 327338 10.1180/claymin.1982.017.3.05.CrossRefGoogle Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T., 1986 Numerical Recepies: The Art of Scientific Computing Cambridge Cambridge University Press.Google Scholar
Reynolds, R. C. Jr., 1980 Interstratified clay minerals Crystal Structures of Clay Minerals and Their X-ray Identification 4 249359.CrossRefGoogle Scholar
Reynolds, R. C. Jr., 1985 NEWMOD: A computer program for the calculation of one-dimensional patterns of mixed-layered clays .Google Scholar
Reynolds, R. C. Jr., 1986 The Lorentz-polarization factor and preferred orientation in oriented clay aggregates Clays & Clay Minerals 34 359367 10.1346/CCMN.1986.0340402.CrossRefGoogle Scholar
Reynolds, R. C. Jr., 1989 Diffraction by small and disordered crystals Modern Powder Diffraction, Reviews in Mineralogy 20 145181 10.1515/9781501509018-009.CrossRefGoogle Scholar
Reynolds, R. C. Jr. and Hower, J., 1970 The nature of interlayering in mixed-layer illite-montmorillonites Clays & Clay Minerals 18 2536 10.1346/CCMN.1970.0180104.CrossRefGoogle Scholar
Sakharov, B. A. and Drits, V. A., 1973 Mixed-layer kaolinite-montmorillonite: A comparison of observed and calculated diffraction patterns Clays & Clay Minerals 21 1517 10.1346/CCMN.1973.0210104.CrossRefGoogle Scholar
Sato, T., Watanabe, T. and Otsuka, R., 1992 Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites Clays & Clay Minerals 40 103113 10.1346/CCMN.1992.0400111.CrossRefGoogle Scholar
Smart, G. and Clayton, T., 1985 The progressive illitization of interstratified illite-smectite from Carboniferous sediments of northern England and its relationship to organic maturity indicators Clay Miner. 20 455466 10.1180/claymin.1985.020.4.02.CrossRefGoogle Scholar
Srodon, J., Mortland, M. M. and Farmer, V. C., 1979 Correlation between coal and clay diagenesis in the Carboniferous of the upper Silesian coal basin Proc. Int. Clay Conf., Oxford 1978 Amsterdam Elsevier 251260.Google Scholar
Srodon, J., 1980 Precise identification of illite/smectite interstratifications by X-ray powder diffraction Clays & Clay Minerals 28 401411 10.1346/CCMN.1980.0280601.CrossRefGoogle Scholar
Srodon, J., 1981 X-Ray identification and randomly interstratified illite-smectite in mixtures with discrete illite Clay Miner. 16 297304 10.1180/claymin.1981.016.3.07.CrossRefGoogle Scholar
Srodon, J., 1984 X-ray powder diffraction of illitic materials Clays & Clay Minerals 32 337349 10.1346/CCMN.1984.0320501.CrossRefGoogle Scholar
Srodon, J. and Eberl, D. D., 1984 Illite Micas, Reviews in Mineralogy 13 495544.Google Scholar
Stern, W. B., Mullis, J., Rahn, M. and Frey, M., 1991 Deconvolution of the first “illite” basal reflection Schweiz. Mineral. Petrogr. Mitt. 71 453462.Google Scholar
Tchoubar, C., 1980 Determination des paramètres d’ordre et de désordre dans quelques solides à structure lamellaire (silicates, carbones) Bull. Minéral. 103 404418.CrossRefGoogle Scholar
Tettenhorst, R. T., Corbato, C. E. and Haller, R. I., 1990 The I/S contact in 10 Å–17 Å interstratified clay minerals Clay Miner. 25 437445 10.1180/claymin.1990.025.4.03.CrossRefGoogle Scholar
Tomita, K., Takashi, H. and Watanabe, T., 1988 Quantification curves for mica/smectite interstratifications by X-Ray powder diffraction Clays & Clay Minerals 36 258262 10.1346/CCMN.1988.0360307.CrossRefGoogle Scholar
Veblen, D. R., Guthrie, G. D., Livi, K J T and Reynolds, R. C., 1990 High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite: Experimental results Clays & Clay Minerals 38 113 10.1346/CCMN.1990.0380101.CrossRefGoogle Scholar
Velde, B., (1985) Clay Minerals: A Physico-Chemical Explanation of Their Occurrence: Developments in Sedimentology 40, Elsevier, Amsterdam, 427 pp.Google Scholar
Velde, B. and Espitalié, J., 1989 Comparison of kerogen maturation and illite/smectite composition in diagenesis J. Petrol. Geol. 12 103110 10.1111/j.1747-5457.1989.tb00223.x.CrossRefGoogle Scholar
Velde, B., Suzuki, T. and Nicot, E., 1986 Pressure-temperature-composition of illite/smectite mixed-layer minerals: Niger delta mudstones and other examples Clays & Clay Minerals 34 435441 10.1346/CCMN.1986.0340410.CrossRefGoogle Scholar
Velde, B. and Vasseur, G., 1992 A kinetic model of the smectite-to-illite transformation based on diagenetic mineral series Amer. Mineral. .Google Scholar
Watanabe, T., 1981 Identification of illite/montmorillonite interstratification by X-ray powder diffraction J. Miner. Soc. Jap., Spec. Issue 15 3241.Google Scholar
Watanabe, T., 1988 The structural model of illite/smectite interstratified mineral and the diagram for their identification Clay Sci. 7 97114.Google Scholar