Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T04:08:15.407Z Has data issue: false hasContentIssue false

Decomposition of Experimental X-Ray Diffraction Patterns (Profile Fitting): A Convenient Way to Study Clay Minerals

Published online by Cambridge University Press:  28 February 2024

Bruno Lanson*
Affiliation:
Environmental Geochemistry Group, LGIT IRIGM, University of Grenoble and CNRS, BP 53, 38041 Grenoble Cedex 9, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper thoroughly describes the decomposition procedure, using the example of DECOMPXR (Lanson 1990). The steps of the decomposition procedure are: 1) preliminary data processing; 2) decomposition; 3) validation of results; and 4) use of the results. The use of decomposition is restricted to the separation of contributions from various phases. The effect of preliminary data processing steps (data smoothing, background stripping) on profile shape is shown to be limited and their implementation is detailed. Potential experimental limitations such as peak symmetry, experimental reproducibility or discrimination are equally minor. A logical decomposition process starts from the definition of the angular range to be fitted, proceeds with the determination of the number of elementary peaks to be fitted and ends with the check for results consistency.

Numerical data processing is a powerful tool for the accurate identification of monophases, because of the additional parameters available to constrain XRD profile simulation. Ultimately, however, the match over the whole angular range of both the experimental and the simulated patterns remains the only valid way to characterize the phases present in the sample. Additionally, the decomposition procedure permits both the identification of complex clay mineral assemblages and the characterization of their evolution. This step constrains, and may help to determine, the reaction mechanisms of a transformation; and, as a consequence, to characterize and to model the kinetics of this transformation.

Type
Research Article
Copyright
Copyright © 1997, The Clay Minerals Society

References

Bouchet, A., Lajudie, A., Rassineux, F., Meunier, A. and Atabek, R.. 1992. Mineralogy and kinetics of alteration of a mixed-layer kaolinite/smectite in nuclear waste disposal simulation experiment (Stripa site, Sweden). Appl Clay Sci 7: 113123.CrossRefGoogle Scholar
Drits, V.A., Tchoubar, C., Besson, G., Bookin, A.S., Rousseaux, F., Sakharov, B.A. and Tchoubar, D.. 1990. X-ray diffraction by disordered lamellar structures: theory and applications to microdivided silicates and carbons. Berlin: Springer-Verlag. 371 p.CrossRefGoogle Scholar
Drits, V.A., Weber, F., Salyn, A.L. and Tsipursky, S.I.. 1993. X-ray identification of one-layer illite varieties: application to the study of illites around uranium deposits of Canada. Clays Clay Miner 41: 389398.CrossRefGoogle Scholar
Howard, S.A. and Preston, K.D.. 1989. Profile fitting of powder diffraction patterns. In: Bish, D.L., Post, J.E., editors. Reviews in mineralogy 20: Modern powder diffraction. Washington, DC: Miner Soc Am. p 217275.CrossRefGoogle Scholar
Howard, S.A. and Snyder, R.L.. 1983. An evaluation of some profile models and optimization procedures used in the profile fitting. Adv X-ray Anal 26: 7381.Google Scholar
Jones, R.C.. 1989. A computer technique for X-ray diffraction curve fitting/peak decomposition. In: Pevear, D.R., Mumpton, F.A., editors. Clay Minerals Society workshop lectures, vol 1: Quantitative mineral analysis of clays. Boulder, CO: Clay Miner Soc. p 51101.Google Scholar
Klug, H.P. and Alexander, L.E.. 1974. X-ray diffraction procedures for polycrystalline and amorphous materials. New York: J Wiley. 966 p.Google Scholar
Kodama, H., Gatineau, L. and Méring, J.. 1971. An analysis of X-ray diffraction line profiles of microcrystalline muscovites. Clays Clay Miner 19: 405413.CrossRefGoogle Scholar
Lanson, B.. 1990. Mise en évidence des mécanismes de transformation des interstratifiés illite/smectite au cours de la diagenèse [Ph.D. thesis]. Paris: Univ. Paris 6 - Jussieu. 366 p.Google Scholar
Lanson, B., Beaufort, D., Berger, G., Baradat, J. and Lacharpagne, J.C.. 1996. Late-stage diagenesis of clay minerals in porous rocks: Lower Permian Rotliegendes reservoir off-shore of The Netherlands. J Sed Res 66: 501518.Google Scholar
Lanson, B., Beaufort, D., Berger, G., Petit, S. and Lacharpagne, J.C.. 1995. Evolution de la structure cristallographique des minéraux argileux dans le réservoir gréseux Rotliegend des Pays-Bas. Bull Cent Rech EAP 19: 243265.Google Scholar
Lanson, B. and Besson, G.. 1992. Characterization of the end of smectite-to-illite transformation: Decomposition of X-ray patterns. Clays Clay Miner 40: 4052.CrossRefGoogle Scholar
Lanson, B. and Champion, D.. 1991. The I/S-to-illite reaction in the late stage diagenesis. Am J Sci 291: 473506.CrossRefGoogle Scholar
Lanson, B. and Meunier, A.. 1995. La transformation des inter-stratifiés ordonnés (S ≥ 1) illite/smectite en illite dans les séries diagénétiques: état des connaissances et perspectives. Bull Cent Rech EAP 19: 149165.Google Scholar
Lanson, B. and Velde, B.. 1992. Decomposition of X-ray diffraction patterns: a convenient way to describe complex diagenetic smectite-to-illite evolution. Clays Clay Miner 40: 629643.CrossRefGoogle Scholar
Liebhafsky, H.A., Pfeiffer, H.G., Winslow, E.H. and Zemany, P.D.. 1972. X-rays, electrons, and analytical chemistry: Spectro-chemical analysis with X-rays. New York: J Wiley. 566 p.Google Scholar
Louër, D. and Langford, J.I.. 1988. Peak shape and resolution in conventional diffractometry with monochromatic X-rays. J Appl Crystallogr 21: 430437.CrossRefGoogle Scholar
Matthews, J., Velde, B. and Johansen, H.. 1994. Significance of K-Ar ages of authigenic illitic clay minerals in sandstones and shales from the North Sea. Clay Miner 29: 379389.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C. Jr. 1989. X-ray diffraction and the identification and analysis of clay minerals. Oxford: Oxford Univ Pr. 322 p.Google Scholar
Nelder, J.A. and Mead, R.. 1965. A simplex method for function minimization. Computer J 7: 757769.CrossRefGoogle Scholar
Pevear, D.R., Klimentidis, R.E. and Robinson, G.A.. 1991. Genetic significance of kaolinite nucleation and growth on pre-existing mica in sandstones and shales. In: Program and abstracts for the Clay Miner Soc 28th annual meeting; Houston, Texas. p 125.Google Scholar
Pons, C.H., Rousseaux, F. and Tchoubar, D.. 1981. Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l'étude du gonflement des smectites: I. Etude du système eau-montmorillonite-Na en fonction de la température. Clay Miner 16: 2342.CrossRefGoogle Scholar
Pons, C.H., Rousseaux, F. and Tchoubar, D.. 1982. Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l'étude du gonflement des smectites: II. Etude de différents systèmes eau-smectites en fonction de la température. Clay Miner 17: 327338.CrossRefGoogle Scholar
Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T.. 1986. Numerical recipies: The art of scientific computing. Cambridge: Cambridge Univ Pr. 818 p.Google Scholar
Renac, C. and Meunier, A.. 1995. Reconstruction of paleothermal conditions in a passive margin using illite/smectite mixed-layered series (BA1 scientific deep drill-hole, Ardèche, France). Clay Miner 30: 107118.CrossRefGoogle Scholar
Reynolds, R.C. Jr. 1980. Interstratified clay minerals. In: Brindley, G.W., Brown, G., editors. Crystal structures of clay minerals and their X-ray identification. London: Miner Soc. p 249359.CrossRefGoogle Scholar
Reynolds, R.C. Jr. 1986. The Lorentz-polarization factor and preferred orientation in oriented clay aggregates. Clays Clay Miner 34: 359367.CrossRefGoogle Scholar
Reynolds, R.C. Jr. 1989. Diffraction by small and disordered crystals. In: Bish, D.L., Post, J.E., editors. Reviews in mineralogy 20: Modern powder diffraction. Washington, DC: Miner Soc Am. p 145181.CrossRefGoogle Scholar
Reynolds, R.C. Jr and Hower, J.. 1970. The nature of interlayering in mixed-layer illite-montmorillonites. Clays Clay Miner 18: 2536.CrossRefGoogle Scholar
Righi, D. and Meunier, A.. 1991. Characterization and genetic interpretation of clays in an acid brown soil (dystrochrept) developed in a granitic saprolite. Clays Clay Miner 39: 519530.CrossRefGoogle Scholar
Righi, D., Petit, S. and Bouchet, A.. 1993. Characterization of hydroxy-interlayered vermiculite and illite/smectite interstratified minerals from the weathering of chlorite in a cryothod. Clays Clay Miner 41: 484495.CrossRefGoogle Scholar
Righi, D., Velde, B. and Meunier, A.. 1995. Clay stability in clay-dominated soil systems. Clay Miner 30: 4554.CrossRefGoogle Scholar
Robinson, D. and Bevins, R.E.. 1994. Mafic phyllosilicates in low-grade metabasites. Characterization using deconvolution analysis. Clay Miner 29: 223237.CrossRefGoogle Scholar
Sato, T., Watanabe, T. and Otsuka, R.. 1992. Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays Clay Miner 40: 103113.CrossRefGoogle Scholar
Środoń, J.. 1980. Precise identification of illite/smectite inter-stratifications by X-ray powder diffraction. Clays Clay Miner 28: 401411.CrossRefGoogle Scholar
Stern, W.B., Mullis, J., Rahn, M. and Frey, M.. 1991. Deconvolution of the first “illite” basal reflection. Schweiz Mineral Petrogr Mitt 71: 453462.Google Scholar
Tsipursky, S.J., Eberl, D.D. and Buseck, P.R.. 1992. Unusual tops (bottoms?) of particles of 1M illite from the Silverton Caldera (CO). In: Agronomy abstracts annual meetings. Madison, WI: Am Soc Agron. p 381382.Google Scholar
Varajao, A. and Meunier, A.. 1995. Particle morphological evolution during the conversion of I/S to illite in lower cretaceous shales from Sergipe-Alagoas Basin, Brazil. Clays Clay Miner 43: 1428.CrossRefGoogle Scholar