Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T18:14:34.374Z Has data issue: false hasContentIssue false

Current Problems with the Nomenclature of Phyllosilicates

Published online by Cambridge University Press:  28 February 2024

B. B. Zvyagin*
Affiliation:
Institute of Ore Mineralogy (IGEM), Russian Academy of Sciences, Staromonetny 35, 109017, Moscow, Russia
*
*E-mail of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The nomenclature of phyllosilicates is discussed in relation to structural variations of layers and interlayers. Some discrepancies in the nomenclature which arose due to historical reasons and different viewpoints may be reconciled if the choice of the construction units (layers or their parts) is related to definite sets of structures for which these units are common. Features of idealized models approximating real structures should be considered for classification and derivation of nomenclature sets, whereas priority is given to structural variations before lattice and symmetry characteristics. Layer polymorphs, pseudo-polytypes, polytypes (both simple and complex), and OD structures are distinguished. Particular results obtained for micas as a model example of phyllosilicates in relation to modular structures in general are considered in an Appendix.

Type
Research Article
Copyright
Copyright © 2001, The Clay Minerals Society

Footnotes

*

This paper is based on the presentation by B. B. Zvyagin during the award of the 2000 Marilyn and Sturgess W. Bailey Distinguished Member Award of the Clay Minerals Society.

References

Angel, R.J., 1986 Polytypes and polytypism Zeitschrift für Kristallographie 176 193204.CrossRefGoogle Scholar
Backhaus, K.-O. and Durovic, S., 1984 Polytypism of micas. I. MDO polytypes and their derivation Clay and Clay Minerals 32 453463 10.1346/CCMN.1984.0320603.CrossRefGoogle Scholar
Bailey, S.W., 1977 Report of the IMA-IUCr Joint Committee on nomenclature Acta Crystallographica A33 681684 10.1107/S0567739477001703.CrossRefGoogle Scholar
Bailey, S.W., 1980 Summary of recommendations of AIPEA Nomenclature Committee Clays and Clay Minerals 28 7378 10.1346/CCMN.1980.0280114.Google Scholar
Brindley, G.W. and Pedro, G., 1972 Report of the AIPEA Nomenclature Committee AIPEA Newsletter 7 813.Google Scholar
Chukhrov, F.V. and Zvyagin, B.B. (1966) Halloysite, a crystallochemically and mineralogically distinct species. Pp. 1126 in: Proceedings of the International Clay Conference, 1966, Jerusalem.Google Scholar
Compagnoni, R. Ferraris, G. and Meilini, M., 1985 Carlosturanite, a new asbestiform rock-forming silicate from Val Varatia, Italy American Mineralogist 70 767772.Google Scholar
Dornberger-Schiff, K., 1964 Grundzüge einer Theorie der OD-Strukturen aus Schichten Berlin, Klass Chemie Abhandlungen der Deutsches Akademie der Wissenschaften 3, 107 pp.Google Scholar
Dornberger-Schiff, K., 1982 Geometrical properties of MDO polytypes and procedures for their derivation. I. General concept and applications to polytype families consisting of OD layers all of the same kind Acta Crystallographica A38 483491 10.1107/S0567739482001041.CrossRefGoogle Scholar
Dornberger-Schiff, K. and Durovic, S., 1975 OD interpretation of kaolinite-type structures. I. Symmetry of kaolinite packets and their stacking possibilities Clays and Clay Minerals 23 219229 10.1346/CCMN.1975.0230310.CrossRefGoogle Scholar
Dornberger-Schiff, K. Backhaus, K.-O. and Durovic, S., 1982 Polytypism of micas: OD-interpretation, stacking symbols, symmetry relations Clays and Clay Minerals 30 364374 10.1346/CCMN.1982.0300507.CrossRefGoogle Scholar
Durovic, S., 1981 OD-Character, Polytypie und Identifikation von Schichsilikaten Fortschrifte der Mineralogie 59 191226.Google Scholar
Franzini, M., 1969 The A and B mica layers and the crystal structure of sheet silicates Contributions Mineralogy and Petrology 21 203224 10.1007/BF00371751.CrossRefGoogle Scholar
Guggenheim, S., 2000 Report of the Association Internationale pour L’Etude des Argilles (AIPEA) Nomenclature Committee for 1999 AIPEA Newsletter 36 78.Google Scholar
Guinier, A., 1984 Nomenclature of polytype structures. Report of the IUCr Ad-Hoc Committee on the Nomenclature of Disordered, Modulated and Polytype Structures Acta Crystallographica A40 399404 10.1107/S0108767384000842 (chairman).CrossRefGoogle Scholar
Merlino, S. and Zvyagin, B.B. (in prep.) The pyroxene-spinel polysomatic system.Google Scholar
Nespolo, M., 1999 Analysis of family reflections of OD mica polytypes, and its application to twin identification Mineralogical Journal (Japan) 21 5385 10.2465/minerj.21.53.CrossRefGoogle Scholar
Ross, M. Takeda, H. and Wones, D.R., 1966 Mica polytypes: systematic description and identification Science 151 191193 10.1126/science.151.3707.191.CrossRefGoogle ScholarPubMed
Takeda, H. and Ross, M., 1995 Mica polytypism: identification and origins American Mineralogist 80 715724 10.2138/am-1995-7-808.CrossRefGoogle Scholar
Takeda, H. and Sadanaga, R., 1969 New unit layers for micas Mineralogical Journal (Japan) 5 434449 10.2465/minerj1953.5.434.CrossRefGoogle Scholar
Thompson, J.B., 1978 Biopyriboles and polysomatic series American Mineralogist 63 239249.Google Scholar
Tsipursky, S.I. and Drits, V.A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction Clay Minerals 19 177193 10.1180/claymin.1984.019.2.05.CrossRefGoogle Scholar
Zhukhlistov, A.P. and Zvyagin, B.B. (1991) The efficiency of electron diffraction in revealing 2:1 layers, differing in the structure and symmetry, found in dioctahedral micas and smectites. Pp. 12111212 in: Proceedings of the 7th EUROCLAY Conference, Dresden, 1991.Google Scholar
Zhukhlistov, A.P. Zvyagin, B.B. Soboleva, S.V. and Fedotov, A.F., 1973 The crystal structure of the dioctahedral mica 2M 2 determined by high-voltage electron diffraction Clays and Clay Minerals 21 465470 10.1346/CCMN.1973.0210606.CrossRefGoogle Scholar
Zvyagin, B.B., 1967 Electron-diffraction Analysis of Clay Mineral Structures New York Plenum Press 10.1007/978-1-4615-8612-8 364 pp.CrossRefGoogle Scholar
Zvyagin, B.B., 1993 Modular aspect of crystal structures Crystallography Reports 38 5460.Google Scholar
Zvyagin, B.B. and Merlino, S., 1997 Modular Analysis of Crystal Structures EMU Notes in Mineralogy, 1 Budapest Eötvös University Press 345372.Google Scholar
Zvyagin, B.B. and Drits, V.A., 1996 Interrelated features of structure and stacking of kaolin mineral layers Clays and Clay Minerals 44 297303 10.1346/CCMN.1996.0440301.CrossRefGoogle Scholar
Zvyagin, B.B. and Kyazumov, M.G., 1993 Electron diffraction information on the modularity of layer chalcogenide semiconductors (in Russian) Izvestiya Akademii Nauk (series physics) 57 2229.Google Scholar
Zvyagin, B.B. and Zhukhlistov, A.P. (1999) Nomenclature systematics of micas and its display by texture electron diffraction. Abstracts, EUROCLAY’99, Krakow, Poland, p. 150.Google Scholar
Zvyagin, B.B. Vrublevskaya, Z.V. Zhukhlistov, A.P. Sidorenko, O.V. Soboleva, S.V. and Fedotov, A.F., 1979 High voltage electron diffraction in the study of layered minerals (in Russian) Moscow Nauka 224 pp.Google Scholar
Zvyagin, B.B. Rabotnov, V.T. Sidorenko, O.V. and Kotelnikov, D.D., 1985 The unique mica composed of non-centrosymetric layers (in Russian) Izvestiya Akademii Nauk (series geology) 5 121124.Google Scholar