Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T14:15:32.138Z Has data issue: false hasContentIssue false

A Crystal-Chemical Study of Natural and Synthetic Anionic Clays

Published online by Cambridge University Press:  01 January 2024

Cristina de la Calle
Affiliation:
ISTO, UMR 6113, CNRS-Université d'Orléans, 1A Rue de la Ferollerie, 45071 Orleans Cedex 2, France
Charles-Henri Pons*
Affiliation:
ISTO, UMR 6113, CNRS-Université d'Orléans, 1A Rue de la Ferollerie, 45071 Orleans Cedex 2, France
Jacques Roux
Affiliation:
ISTO, UMR 6113, CNRS-Université d'Orléans, 1A Rue de la Ferollerie, 45071 Orleans Cedex 2, France
Vicente Rives
Affiliation:
Departamento de Química Inorgánica, Universidad de Salamanca, 37008 Salamanca, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A comparative crystallochemical study was performed on natural and synthetic hydrotalcite-like compounds with similar compositions. The nature of the brucite-like sheet stacking was addressed by means of powder X-ray diffraction. From the resulting electron diffraction patterns it was possible to establish the order-disorder of the cations in the brucite-like sheet. The results show that a natural sample from Snarum is an intergrowth of hydrotalcite (3R1 polytype) and manasseite (2H1 polytype) at a ratio of 77:23 (wt.%). An aluminian serpentine is associated with the hydrotalcite and manasseite minerals. The structure of a synthetic sample, Mg:Al = 2:1, was determined as space group R3¯m. For a few crystals in this sample, the octahedral cation distribution is compatible with the observed supercell (a = a′ √3). A second synthetic sample showed the presence of stacking faults and was described as a random layer sequence of two polytypes (3R and 2H).

Type
Research Article
Copyright
Copyright © 2003, The Clay Minerals Society

References

Allman, R. and Lohse, H.H., (1966) Die Kristallstruktur des Sjögrenits und eines Umwandlungs produktes des Koenenits (=chlor-Manasseits) Neues Jahrbuch für Mineralogie Monatshefte 161 181.Google Scholar
Arakcheeva, A.V. Pushcharovskii, D.Y.u. Rastsvetaeva, R.K. Atencio, D. and Lubman, G.U., (1996) Crystal structure and comparative crystal chemistry of Al2Mg4(OH)12CO3.3H2O, a new mineral from the hydrotalcite-manasseite group Crystallography Reports 41 972 981.Google Scholar
Bailey, S.W. and Tyler, S.A., (1960) Clay minerals associated with the Lake Superior iron ores Economic Geology and the Bulletin of the Society of Economic Geologists 55 150175 10.2113/gsecongeo.55.1.150.Google Scholar
Bellotto, M. Rebours, B. Clause, O. Lynch, J. Bazin, D. and Elkaïm, E., (1996) A reexamination of hydrotalcite crystal chemistry Journal of Physical Chemistry B 100 85278534 10.1021/jp960039j.Google Scholar
Bish, D.L., (1977) The occurrence and crystal chemistry of nickel in silicate and hydroxide minerals University Park, Pennsylvania, USA Pennsylvania State University Ph.D. thesis.Google Scholar
Bookin, A.S. and Drits, V.A., (1993) Polytype diversity of the hydrotalcite-like minerals I. Possible polytypes and their diffraction features Clays and Clay Minerals 41 551557 10.1346/CCMN.1993.0410504.Google Scholar
Brindley, G.W., (1980) Order-disorder in clay mineral structures Crystal Structures of Clay Minerals and their X-ray Identification 5 125 196.Google Scholar
Brindley, G.W. and Kikkawa, S., (1979) A crystal study of Mg, Al and Ni, Al hydroxy-perchlorates and hydroxy-carbonates American Mineralogist 64 836 843.Google Scholar
Caillère, S., (1946) Etude microscopique de quelques minéraux opaques associés à la serpentine de Snarum (Norvège) Société française de Mineralogie B69 112 51–55.Google Scholar
Cavani, F. Trifirò, F. and Vaccari, A., (1991) Hydrotalcite-type anionic clays: preparation, properties and applications Catalysis Today 11 173301 10.1016/0920-5861(91)80068-K.Google Scholar
de la Calle, C. Suquet, H. and Pons, C.H., (1988) Stacking order in a 14.30 Å Mg-vermiculite Clays and Clay Minerals 36 481490 10.1346/CCMN.1988.0360601.Google Scholar
Drits, V.A. and Tchoubar, C., (1990) X-ray Diffraction by Disordered Lamellar Structures Berlin, Heidelberg Springer-Verlag 10.1007/978-3-642-74802-8 371 pp.Google Scholar
Feitknecht, W., (1930) Untersuchungen über die Umsetzung fester Stoffe in Flüssigkeiten. 1. Mitteilung: Über einege basische Zinksalze Helvetica Chimica Acta 13 2243 10.1002/hlca.19300130106.Google Scholar
Feitknecht, W., (1953) Die fasten Hydroxisalzen zweiwertiger Metalle Fortschritte der Chemischen Forschung 2 670 757.Google Scholar
Frondel, C., (1941) Constitution and polymorphism of the pyroaurite and sjoögrenite groups American Mineralogist 26 295 303.Google Scholar
Gastuche, M.C. Brown, G. and Mortland, M.M., (1967) Mixed magnesium-aluminium hydroxides. I. Preparation and characterization of compounds formed in dialyzed systems Clay Minerals 7 177192 10.1180/claymin.1967.007.2.05.Google Scholar
Gillery, F.H., (1959) The X ray study of synthetic Mg-Al serpentines and chlorites American Mineralogist 44 143 152.Google Scholar
Hunter, B.A. and Howard, C.J., (2000) A computer program for Rietveld analysis of X-ray and neutron powder diffraction patterns Private Mailbag 1, Menai 2234, New South Wales, Australia Lucas Heights Research Laboratories.Google Scholar
Pausch, H. Lohse, H. Schürmann, K. and Allman, R., (1986) Synthesis of disordered and Al-rich hydrotalcite-like compounds Clays and Clay Minerals 34 507510 10.1346/CCMN.1986.0340502.Google Scholar
Raade, G., (1970) Dypingite, a new hydrous basic carbonate of magnesium, from Norway American Mineralogist 55 1457 1465.Google Scholar
Rebours, B. de la Espinose Caillère, J.B. and Clause, O., (1994) Decoration of nickel and magnesium oxide cristallites with spinel-type phases Journal of the American Chemical Society 116 17071717 10.1021/ja00084a011.Google Scholar
Rives, V. and Ulibarri, M.A., (1999) Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates Coordination Chemistry Reviews 181 61120 10.1016/S0010-8545(98)00216-1.Google Scholar
Roux, J. and Volfinger, M., (1996) Mesures précises à l’aide d’un détecteur courbe Journal de Physique 6 127134 VI, C4.Google Scholar
Roy, D.M. Roy, R. and Osborn, E.F., (1953) The system MgO-Al2O3-H2O and influence of carbonate and nitrate ions on the phase equilibria American Journal of Science 251 337361 10.2475/ajs.251.5.337.Google Scholar
de Roy, A. Forano, C. Khaldi, M. El Malki, K. Besse, J.P., Occelli, M.L. and Robson, H.E., (1992) Expanded clays and other microporous solids Synthesis of Microporous Systems New York Van Nostrand Reinhold 108 169.Google Scholar
Shirozu, H. and Momoi, H., (1972) Synthetic Mg-chlorite in relation to natural chlorite Mineralogical Clay Journal, Sapporo 6 464476 10.2465/minerj1953.6.464.Google Scholar
Szostak, R. and Ingram, C., (1995) Pillared layered structures (PLS) Catalysis by Microporous Materials 94 1338 10.1016/S0167-2991(06)81203-6.Google Scholar
Taylor, H.F.W., (1969) Segregation and cation ordering in sjögrenite and pyroaurite Mineralogical Magazine 37 338389 10.1180/minmag.1969.037.287.04.Google Scholar