Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T07:55:19.117Z Has data issue: false hasContentIssue false

The Crystal Structure of Roscoelite-1M

Published online by Cambridge University Press:  01 January 2024

Maria Franca Brigatti*
Affiliation:
Department of Earth Sciences, University of Modena and Reggio Emilia, Italy
Enrico Caprilli
Affiliation:
Department of Earth Sciences, University of Modena and Reggio Emilia, Italy
Marco Marchesini
Affiliation:
ENI-AGIP Towers, San Donato Milanese, Milano, Italy
Luciano Poppi
Affiliation:
Department of Earth Sciences, University of Modena and Reggio Emilia, Italy
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Single-crystal X-ray diffraction experiments were carried out on roscoelite crystals from Reppia, Val Graveglia, Italy. Roscoelite [structural formula: XII(Ba0.006K0.994)IV(Si3.150Al0.850) VI(Al0.040Fe0.150Mg0.100Mn0.062V1.696Ti0.003)O10(OH)2] shows a near-perfect three-dimensional stacking order with cell parameters a = 5.292(1), b = 9.131(2), c = 10.206(3) Å, β = 100.98(2)° and space group C2/m, which indicate a 1M polytype. The crystal structure was refined on the basis of Fo2 for 846 unique reflections to R1 = 3.29% calculated using 746 unique observed reflections [|Fo| ⩾ 4σ(Fo)]. The mean tetrahedral cation–oxygen atom distance, <T−O> = 1.641 Å, is close to the mean <T−O> value obtained for dioctahedral true micas from the literature, whereas the octahedral sheet is characterized by a larger cis-octahedral cation–oxygen atom bond distance <M2−O> = 2.020 Å which, together with the mean electron count, is consistent with V occupancy. The presence of V within the octahedral sheet produces the smallest tetrahedral rotation (α = 2.3°), the lowest flattening of the basal oxygen surface (Δz = 0.118 Å) and the narrowest interlayer separation (3.030 Å) in dioctahedral micas.

Type
Research Article
Copyright
Copyright © 2003, The Clay Minerals Society

References

Alietti, E. Brigatti, M.F. and Poppi, L., (1995) The crystal structure and chemistry of high-aluminium phologopite Mineralogical Magazine 59 149157 10.1180/minmag.1995.59.394.15.Google Scholar
Amisano-Canesi, A. Chiari, G. Ferraris, G. Ivaldi, G. and Soboleva, S.V., (1994) Muscovite- and phengite-3T: crystal structure and conditions of formation European Journal of Mineralogy 6 489496 10.1127/ejm/6/4/0489.Google Scholar
Ankinovich, E.A. Bekenova, G.K. Kompaneitsev, V.P. Kotel’nikov, P.E. and Savostin, B.A., (1997) Vanadium and vanadium-bearing micas from the Cambrian carbonaceous-siliceous sedimentary rocks in the Greater Karatau Range of southern Kazakhstan. Part I. Chernykhites, Roscoelites Geologiya Kazakhstana 4 84 93.Google Scholar
Ankinovich, E.A. Bekenova, G.K. Kompaneitsev, V.P. Kotel’nikov, P.E. and Savostin, B.A., (2001) Vanadium and vanadium-bearing micas from the Cambrian carbon-siliceous formation of the Bolskoi Karatau Range (south Kazakhstan). Part 2. V4+-Ba-phengites. Vanadium bearing muscovite and phengites Geologiya Kazakhstana 2 13 23.Google Scholar
Backhaus, K.O., (1983) Structure refinement of a lepidolite-1M Crystal Research Technology 18 12531260 10.1002/crat.2170181009.Google Scholar
Bigi, S. and Brigatti, M.F., (1994) Crystal chemistry and microstructures of plutonic biotite American Mineralogist 79 63 72.Google Scholar
Bigi, S. Brigatti, M.F. Mazzucchelli, M. and Rivalenti, G., (1993) Crystal chemical variations in Ba-rich biotites from gabbroic rocks of lower crust (Ivrea Zone, NW Italy) Contributions to Mineralogy and Petrology 113 8799 10.1007/BF00320833.Google Scholar
Bohlen, S.R. Peacor, D.R. and Essene, E.J., (1980) Crystal chemistry of a metamorphic biotite and its significance in water barometry American Mineralogist 65 55 62.Google Scholar
Breit, G.N., (1995) Origin of clay minerals associated with V-U deposits in the Entrada Sandstone, Placerville Mining District, Southwestern Colorado Economic Geology 90 407429 10.2113/gsecongeo.90.2.407.Google Scholar
Brigatti, M.F. and Davoli, P., (1990) Crystal structure refinement of 1M plutonic biotites American Mineralogist 75 305 313.Google Scholar
Brigatti, M.F. Guggenheim, S., Mottana, A. Sassi, F.P. Thompson, J.B. Jr. and Guggenheim, S., (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models Micas: Crystal Chemistry & Metamorphic Petrology Washington, D.C Mineralogical Society of America 1 100.Google Scholar
Brigatti, M.F. and Poppi, L., (1993) Crystal chemistry of Barich trioctahedral micas-1 M European Journal of Mineralogy 5 857871 10.1127/ejm/5/5/0857.Google Scholar
Brigatti, M.F. Galli, E. and Poppi, L., (1991) Effect of Ti substitution in biotite-1M crystal chemistry American Mineralogist 76 1174 1183.Google Scholar
Brigatti, M.F. Medici, L. Saccani, E. and Vaccaro, C., (1996) Crystal chemistry and petrologic significance of Fe3+-rich phlogopite from the Tapira carbonatite complex, Brazil American Mineralogist 81 913927 10.2138/am-1996-7-814.Google Scholar
Brigatti, M.F. Frigieri, P. and Poppi, L., (1998) Crystal chemistry of Mg-, Fe-bearing muscovites-2M 1 American Mineralogist 83 775785 10.2138/am-1998-7-809.Google Scholar
Brigatti, M.F. Lugli, C. Poppi, L. and Elburg, M., (1998) Crystal chemistry of biotites from mafic enclaves in the Warburton granodiorite, Lachlan Fold Belt (Australia) European Journal of Mineralogy 10 855864 10.1127/ejm/10/5/0855.Google Scholar
Brigatti, M.F., Lalonde, A.E. and Medici, L. (1999) Crystal chemistry of IVFe3+-rich phlogopites: a combined single-crystal X-ray and Mössbauer study. Pp. 317327 in: Clays for Our Future: Proceedings of the 11th International Clay Conference, Ottawa, Canada, 1997 (Kodama, H., Mermut, A., and Torrance, J.K., editors).Google Scholar
Brigatti, M.F. Frigieri, P. Ghezzo, C. and Poppi, L., (2000) Crystal chemistry of Al-rich biotites coexisting with muscovites in peraluminous granites American Mineralogist 85 436448 10.2138/am-2000-0405.Google Scholar
Brigatti, M.F. Lugli, C. Poppi, L. Foord, E.E. and Kile, D.E., (2000) Crystal chemical variations in Li- and Fe-rich micas from Pikes Peak Batholith (central Colorado) American Mineralogist 85 12751286 10.2138/am-2000-8-920.Google Scholar
Brigatti, M.F. Galli, E. Medici, L. Poppi, L. Cibin, G. Marcelli, A. and Mottana, A., (2001) Crystal structure refinement and X-ray absorption spectroscopy of chromium-containing muscovite European Journal of Mineralogy 13 377390 10.1127/0935-1221/01/0013-0377.Google Scholar
Brigatti, M.F. Kile, D.E. and Poppi, M., (2001) Crystal structure and crystal chemistry of lithium-bearing muscovite-2M 1 The Canadian Mineralogist 39 11711180 10.2113/gscanmin.39.4.1171.Google Scholar
Brigatti, M.F. Guggenheim, S. and Poppi, M., (2003) Crystal chemistry of the 1M mica polytype: the octahedral sheet American Mineralogist 88 667675 10.2138/am-2003-0420.CrossRefGoogle Scholar
Cabella, R. Gaggero, L. and Lucchetti, G., (1991) Isothermalisobaric mineral equilibria in braunite-, rhodonite-, johannsenite-, calcite-bearing as semblages from Northern Appennine metacherts (Italy) Lithos 27 149154 10.1016/0024-4937(91)90009-A.CrossRefGoogle Scholar
Catti, M. Ferraris, G. and Ivaldi, G., (1989) Thermal strain analysis in the crystal structure of muscovite at 700°C European Journal of Mineralogy 1 625632 10.1127/ejm/1/5/0625.Google Scholar
Distler, V.V. Yudovskaya, M.A. Prokof’ev, V.A. Sluzhenikin, S.F. Mokhov, A.V. and Mun, Y.a.V., (2000) Hydrothermal platinum mineralization in the Waterberg deposit (Transvaal, South Africa) Geologiya Rudnykh Mestorozhdenii 42 363 376.Google Scholar
Donnay, G. Morimoto, N. Takeda, H. and Donnay, J.D.H., (1964) Trioctahedral one-layer micas: I. Crystal structure of a synthetic iron mica Acta Crystallographica 17 13691373 10.1107/S0365110X64003450.Google Scholar
Donovan, J.J. (1995) PROBE: PC-based data acquisition and processing for electron microprobes. Advanced Microbeam, 4217 King Graves Rd., Vienna, Ohio, 44473.Google Scholar
Evsyunin, V.G. Kashaev, A.A. and Rastsvetaeva, R.K., (1997) Crystal structure of a new representative of Cr micas Crystallography Reports 42 571 574.Google Scholar
Gaines, R.V. Skinner, H.C. Foord, E.E. Mason, B. and Rosenzweig, A., (1997) Dana’s new mineralogy: the system of mineralogy of James Dwight Dana and Edward Salisbury Dana 8th Chichester, UK Wiley.Google Scholar
Guggenheim, S., (1981) Cation ordering in lepidolite American Mineralogist 66 1221 1232.Google Scholar
Guggenheim, S. and Bailey, S.W., (1977) The refinement of zinnwaldite-1M in subgroup symmetry American Mineralogist 62 1158 1167.Google Scholar
Guggenheim, S. and Kato, T., (1984) Kinoshitalite and Mn phlogopites: Trial refinements in subgroup symmetry and further refinement in ideal symmetry Mineralogical Journal 12 15 10.2465/minerj.12.1.Google Scholar
Guggenheim, S. Chang, Y.-H. and van Koster Groos, A.F., (1987) Muscovite dehydroxylation: High-temperature studies American Mineralogist 72 537 550.Google Scholar
Güven, N., (1971) The crystal structures of 2M 1 phengite and 2M 1 muscovite Zeitschift für Kristallographie 134 196 212.Google Scholar
Hawthorne, F.C. Teertstra, D.K. and Černý, P., (1999) Crystal-structure refinement of a rubidian cesian phlogopite American Mineralogist 84 778781 10.2138/am-1999-5-611.Google Scholar
Hazen, R.M. and Burnham, C.W., (1973) The crystal structures of one-layer phlogopite and annite American Mineralogist 58 889 900.Google Scholar
Hazen, R.M. Finger, L.W. and Velde, D., (1981) Crystal structure of a silica- and alkali-rich trioctahedral mica American Mineralogist 66 586 591.Google Scholar
Hofmann, B.A., (1991) Mineralogy and geochemistry of reduction spheroids in red beds Mineralogy and Petrology 44 107124 10.1007/BF01167103.Google Scholar
Ibers, J.A. and Hamilton, W.C., (1974) International Tables for X-ray Crystallography 4. 99 101.Google Scholar
Joswig, W. (1972) Neutronenbeugungsmessungen an einem 1M-phlogopit. Neues Jahrbuch für Mineralogie Monatshefte, 111.Google Scholar
Kalinichenko, A.M. Matyash, I.V. Rozhdestvenskaya, I.V. and Frank-Kamenetskii, V.A., (1974) Refinement of the structural characteristics of chernykhite from proton magnetic resonance data Kristallografiya 19 123 125.Google Scholar
Kato, T. Miúra, Y. Yoshii, M. and Maeda, K., (1979) The crystal structure of 1M-kinoshitalite, a new barium brittle mica and 1M-manganese trioctahedral micas Mineralogical Journal 9 392408 10.2465/minerj.9.392.Google Scholar
Kelley, K.D. and Ludington, S., (2002) Cripple Creek and other alkaline-related gold deposits in the southern Rocky Mountains, USA: influence of regional tectonics Mineralium Deposita 37 3860 10.1007/s00126-001-0229-4.Google Scholar
Knurr, R.A. and Bailey, S.W., (1986) Refinement of Mn-substituted muscovite and phlogopite Clays and Clay Minerals 34 716 10.1346/CCMN.1986.0340102.Google Scholar
Ledeneva, N.V. and Pakulnis, G.V., (1997) Mineralogy and formation conditions of uranium-vanadium deposits in the Onega basin (Russia) Geology of Ore Deposits 39 219 228.Google Scholar
Lee, J.H. and Guggenheim, S., (1981) Single crystal X-ray refinement of pyrophyllite-1Tc American Mineralogist 66 350 357.Google Scholar
Leoni, L. Marroni, M. Sartori, F. and Tamponi, M., (1996) Metamorphic grade in metapelites of the Internal Liguride Units (Northern Apennines, Italy) European Journal of Mineralogy 8 3550 10.1127/ejm/8/1/0035.Google Scholar
Marchesini, M. and Pagano, R., (2001) The Val Graveglia manganese district, Liguria, Italy The Mineralogical Record 32 349 415.Google Scholar
McCauley, J.W. Newnham, R.E. and Gibbs, G.V., (1973) Crystal structure analysis of synthetic fluorophlogopite American Mineralogist 58 249 254.Google Scholar
North, A.C.T. Phillips, D.C. and Mathews, F.S., (1968) A semi-empirical method of absorption correction Acta Crystallographica A24 351359 10.1107/S0567739468000707.Google Scholar
Ohta, T. Takeda, H. and Takéuchi, Y., (1982) Mica polytypism: similarities in the crystal structures of coexisting 1M and 2M 1 oxybiotite American Mineralogist 67 298 310.Google Scholar
Peacor, D.R. Coveney, R.M. and Zhao, G.M., (2000) Authigenic illite and organic matter: The principal hosts of vanadium in the Mecca Quarry Shale at Velpen, Indiana Clays and Clay Minerals 48 311316 10.1346/CCMN.2000.0480301.Google Scholar
Rieder, M. Cavazzini, G. D’yakonov, Y.S. Frank-Kamenetskii, V.A. Gottardi, G. Guggenheim, S. Koval, P.V. Müller, G. Neiva, A.M.R. Radoslovich, E.W. Robert, J.-L. Sassi, F.P. Takeda, H. Weiss, Z. and Wones, D.R., (1998) Nomenclature of the micas Clays and Clay Minerals 46 586595 10.1346/CCMN.1998.0460513.Google Scholar
Robinson, K. Gibbs, G.V. and Ribbe, P.H., (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra Science 172 567570 10.1126/science.172.3983.567.Google Scholar
Ronacher, E. Richards, J.P. Villeneuve, M.E. and Johnston, M.D., (2002) Short life-span of the ore-forming system at the Porgera gold deposit, Papua New Guinea: laser 40Ar/39Ar dates for roscoelite, biotite, and hornblende Mineralium Deposita 37 7586 10.1007/s00126-001-0231-x.Google Scholar
Rothbauer von, R. (1971) Untersuchung eines 2M 1-Muskovits mit Neutronenstrahlen. Neues Jahrbuch für Mineralogie Monatshefte, 143154.Google Scholar
Rule, A.C. and Bailey, S.W., (1985) Refinement of the crystal structure of phengite-2M 1 Clays and Clay Minerals 33 403409 10.1346/CCMN.1985.0330505.Google Scholar
Rumyantseva, E.V., (1985) Some minerals of chromium-vanadium glimmerites of Karelia Zapiski Vsesoyuznogo Mineralogicheskogo Obshchetsva 114 55 62.Google Scholar
Russell, R.L. and Guggenheim, S., (1999) Crystal structures of hydroxyphlogopite at high temperatures and heat-treated biotites: The influence of the O,OH,F site The Canadian Mineralogist 37 711 720.Google Scholar
Semenova, T.F. Rozhdestvenskaya, I.V. and Frank-Kamenetskii, V.A., (1977) Refinement of the crystal structure of tetraferriphlogopite Soviet Physics-Crystallography 22 680 683.Google Scholar
Shannon, R.D., (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallographica A 32 751767 10.1107/S0567739476001551.Google Scholar
Sheldrick, G.M., (1997) SHELX-97, a program for crystal structure refinement Germany University of Göttingen.Google Scholar
Sidorenko, O.V. Zvyagin, B.B. and Soboleva, S.V., (1977) Crystal structure of 3T paragonite Soviet Physics-Crystallography 22 557 559.Google Scholar
Siemens, , (1993) XSCANS: X-ray single crystal analysis system — Technical reference Madison, Wisconsin, USA Siemens instruments.Google Scholar
Soboleva, S.V. Sidorenko, O.V. and Zvyagin, B.B., (1977) Crystal structure of paragonite 1 M. Soviet Physics-Crystallography 22 291 294.Google Scholar
Takeda, H. and Donnay, J.D.H., (1966) Trioctahedral one-layer micas. III. Crystal structure of a synthetic lithium fluormica Acta Crystallographica 20 638646 10.1107/S0365110X66001543.Google Scholar
Takeda, H. and Morosin, B., (1975) Comparison of observed and predicted structural parameters of mica at high temperature Acta Crystallographica B31 24442452 10.1107/S0567740875007777.Google Scholar
Takeda, H. and Ross, M., (1975) Mica polytypism: Dissimilarities in the crystal structures of coexisting 1M and 2M1 biotite American Mineralogist 60 1030 1040.Google Scholar
van Panhuys Sigler, M. Trewin, N.H. and Still, J., (1996) Roscoelite associated with reduction spots in Devonian red beds, Gamrie Bay, Banffshire Scottish Journal of Geology 32 127132 10.1144/sjg32020127.Google Scholar
Weiss, Z. Rieder, M. Smrčok, L. Petríček, V. and Bailey, S.W., (1993) Refinement of the crystal structures of two “protolithionites” European Journal of Mineralogy 5 493502 10.1127/ejm/5/3/0493.Google Scholar
Zhoukhlistov, A.P. Zvyagin, B.B. Lazarenko, E.K. and Pavlishin, V.I., (1977) Refinement of the crystal structure of ferrous seladonite Soviet Physics-Crystallography 22 284 288.Google Scholar