Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T01:34:11.119Z Has data issue: false hasContentIssue false

Cross-Linked Smectites. III. Synthesis and Properties of Hydroxy-Aluminum Hectorites and Fluorhectorites

Published online by Cambridge University Press:  02 April 2024

J. Shabtai
Affiliation:
Department of Fuels Engineering, University of Utah, Salt Lake City, Utah 84112
Maria Rosell*
Affiliation:
Department of Fuels Engineering, University of Utah, Salt Lake City, Utah 84112
M. Tokarz*
Affiliation:
Department of Fuels Engineering, University of Utah, Salt Lake City, Utah 84112
*
1On leave of absence from EKA AB, Surte, Sweden, 1982.
2On leave of absence from the University of Mining and Metallurgy, Krakow, Poland, 1981–1983.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Interaction of La3+- and Ce3+-exchanged hectorites with oligomeric hydroxy-Al cations results in the formation of cross-linked hectorites possessing moderately high surface areas (~ 220–280 m2/g) and high thermal stability. The basal spacings of these products were generally in the range 17.0–18.0 A, the exact d(001) value depending on the age of the hydroxy-Al oligomeric solution and on the pH of the starting hectorite dispersion. Interaction of Li- or Ce-fluorhectorite with hydroxy-Al oligocations produced the corresponding cross-linked fluorhectorites, which showed markedly higher basal spacings (18.2–20.0 Å for air-dried samples), surface areas (~300–380 m2/g), and thermal stability, as compared with those of the cross-linked hectorites. The cross-linking agent applied in the synthesis of the hydroxy-Al hectorite and fluorhectorite products consisted of a solution of hydroxy-Al oligomers aged for periods of 7 to 27 days. A constant ratio of 2.0 mmole Al/g of smectite was used in all preparations. The high basal spacings and porosity of the newly synthesized products are consistent with a structure similar to that previously proposed for cross-linked hydroxy-Al montmorillonite.

Резюме

Резюме

Результатом взамиодействия гекторитов, обмененных La3+ и Ce3+ с олигомерическими катионами гидрокси-Al, являлось формирование поперечно-связанных гекторитов с умеренно большими площадями поверхности (~220–280 м2/г) и большой термической стабильностью. Промежуточные расстояния этих продуктов находились в общем между 17,0 и 18,0 А; точное значение d(001) зависило от возраста олигомерического раствора гидрокси-Al и от pH начальной дисперсии гекторита. Взаимодействие Li- или Ce-флуоргекторита с олигокатионами гидрокси-Al давало соответствующие поперечно-связанные флуоргекториты, которые имели значительно большие промежуточные расстояния (18,2–20,0 Å для образцов, осушенных в воздухе), площади поверхности (300–380 м2/г), и термические стабильности по сравнению со соответствующими значниями для поперечно-связанных гекторитов. Поперечно-связывающее вещество, использованное для синтеза гидрокси-Al гекторита и флуоргекторита, состояло из раствора олигомеров гидрокси-Al после старения через 7 до 27 дней. Постоянное отношение 2,0 ммоль Al на грамм смектита использовалось во всех подготовках. Большие значения промежуточных расстояний и пороватости ново-синтезированных продуктов находятся в согласии со структурой похожей на ранее предположенную структуру для поперечно-связанного гидрокси-Al монтмориллонита. [E.G.]

Resümee

Resümee

Die Wechselwirkung von La3+- und Ce3+-ausgetauschten Hektoriten mit oligomeren Hydroxy-Al-Kationen führt zur Bildung von kreuzweise verknüpften Hektoriten, die eine maßig große Oberfläche (etwa 220–280 m2/g) und eine hohe thermische Stabilität besitzen. Der Basisabstand dieser Produkte reichte im allgemeinen von 17,0–18,0 Å. Der exakte d(001)-Wert hing vom Alter der oligomeren Hydroxy-Al-Lösung und vom pH der Hektorit-Ausgangssubspension ab. Die Wechselwirkung von Li- oder Ce-Fluorhektorit mit Hydroxy-Al-Oligokationen führte zu entsprechenden kreuzweise verknüpften Fluor-hektoriten, die einen beachtlich größeren Basisabstand (18,2–20,0 Å für Luft-getrocknete Proben), eine größere Oberfläche (etwa 300–380 m2/g) und eine höhere thermische Stabilität im Vergleich zu den kreuzweise verknüpften Hektoriten zeigte. Das Agens, das zur kreuzweisen Verknüpfung bei der Synthese von Hydroxy-Al-Hektorit und Fluor-Hektorit-Produkten verwendet wurde, bestand aus einer Lösung von Hydroxy-Al-Oligomeren, die über einen Zeitraum von 7 bis 27 Tagen gealtert wurden. Ein konstantes Smektit-Verhältnis von 2,0 mMol Al/g wurde in allen Versuchen verwendet. Die großen Basisabstände und die Porosität der neu synthetisierten Produkte stimmen mit einer Struktur überein, die vor kurzem für kreuzweise verknüpften Hydroxy-Al-Montmorillonit vorgeschlagen wurde. [U.W.]

Résumé

Résumé

L'interaction d'hectorites échangées avec La3+ et Ce3+ avec des cations oligomériques hydroxy-Al résulte en la formation d'hectorites à liens croisés possédant des aires de surface modérément élevées (~ 220–280 m2/g) et une haute stabilité thermique. Les espacements de base de ces produits étaient généralement compris entre 17,0–18,0 Å, la valeur exacte de d(001) dépendant de l’âge de la solution oligomérique hydroxy-Al et du pH de la dispersion d'hectorite de départ. L'interaction de fluorhectorite-Li ou -Ce avec des oligocations hydroxy-Al a produit des fluorhectorites à liens croisés correspondantes qui montraient des espacements de base (18,2–20,0 Å pour des échantillons sechés à l'air), des aires de surface (~ 300–380 m2/g) et une stabilité thermique nettement plus élevés, en comparaison avec ceux d'hectorites à liens croisés. L'agent produisant des liens croisés appliqué dans la synthèse des produits hectorite hydroxy-Al et fluorhectorite consistait en une solution d'oligomères hydroxy-Al vieillie pour des périodes de 7 à 27 jours. Une proportion constante de 2,0 mmole Al/g de smectite était employée dans toutes les préparations. Les espacements de base élevés et la porosité des produits nouvellement synthetisés sont fidèles à une structure semblable à celle proposée précédemment pour une montmorillonite hydroxy-Al à liens croisés. [D.J.]

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

References

Barrer, R. M. and Jones, D. L., 1970 Chemistry of soil minerals. Part VIII. Synthesis and properties of fluorhec-torites J. Chem. Soc. (A) 15311537.CrossRefGoogle Scholar
Barrer, R. M. and Jones, D. L., 1971 Chemistry of soil minerals. Part X. Shape-selective sorbents derived from fluorhectorites J. Chem. Soc. (A) 25942603.CrossRefGoogle Scholar
Berkheiser, V. E. and Mortland, M. M., 1977 Hectorite complexes with Cu(II) and Fe(II)-1,10-phenanthroline chelates Clays & Clay Minerals 25 105112.CrossRefGoogle Scholar
Bottero, J. Y., Cases, J. M., Fiessinger, F. and Poirier, J. E., 1980 Studies of hydrolized aluminum chloride solutions. 1. Nature of aluminum species and composition of aqueous solutions J. Phys. Chem. 84 29332939.CrossRefGoogle Scholar
Brindley, G. W. and Sempels, R. E., 1977 Preparation and properties of some hydroxy-aluminum beidellites Clay Miner. 12 229236.CrossRefGoogle Scholar
Brindley, G. W. and Kao, C-Chun, 1980 Formation, composition and properties of hydroxy-Al- and hydroxy-Mg-montmorillonite Clays & Clay Minerals 28 435442.CrossRefGoogle Scholar
Farzaneh, F. and Pinnavaia, T. J., 1983 Metal complex catalysts interlayered in smectite clay. Hydroformylation of 1-hexene with rhodium complexes ion-exchanged into hectorite Inorg. Chem. .CrossRefGoogle Scholar
Johansson, G., 1960 On the crystal structures of some basic aluminum salts Acta Chem. Scand. 14 771773.CrossRefGoogle Scholar
Kolthoff, I. M. and Elving, P. J., 1962 Treatise on Analytical Chemistry 161175.Google Scholar
Lagaly, G., Weiss, A. and Heller, L., 1969 Layer charge in mica-type silicates Proc. Internat. Clay Conf. Jerusalem Israel Univ. Press 6180.Google Scholar
Lahav, N., Shani, U. and Shabtai, J., 1978 Cross-linked smectites. I. Synthesis and properties of hydroxy-aluminum montmorillonite Clays & Clay Minerals 26 107115.CrossRefGoogle Scholar
Loeppert, R. H. Jr., Mortland, M. M. and Pinnavaia, T. J., 1979 Synthesis and properties of heat-stable expanded smectite and vermiculite Clays & Clay Minerals 27 201208.CrossRefGoogle Scholar
Lussier, R. J., Magee, J. S., Vaughan, D. E. W., Wauke, S. E. and Chakrabartty, S. K., 1980 Pillared interlayered clay (PILC) cracking catalysts—preparation and properties: Preprint 7th Canadian Symposium on Catalysis Edmonton Alberta Research Council 8895.Google Scholar
McCauley, J., 1983 Catalytic cracking properties of cross-linked montmorillonite (CLM) molecular sieves .Google Scholar
Mortland, M. M. and Berkheiser, V. E., 1976 Triethylene diamine-clay complexes as matrices for adsorption and catalytic reactions Clays & Clay Minerals 24 6063.CrossRefGoogle Scholar
Pinnavaia, T. J., 1982 Intercalation of molecular catalysts in layered silicates ACS Symp. Ser. 192 241253.CrossRefGoogle Scholar
Pinnavaia, T. J., 1983 Intercalated clay catalysts Science 220 365371.CrossRefGoogle ScholarPubMed
Pinnavaia, T. J., Raythatha, R., Guo-Shuh Lee, R., Halloran, L. J. and Hoffman, J. F., 1979 Intercalation of catalyt-ically active metal complexes in mica-type silicates. Rhodium hydrogenation catalysts J. Amer. Chem. Soc. 101 68916897.CrossRefGoogle Scholar
Quayle, W. H. and Pinnavaia, T. J., 1979 Utilization of a cationic ligand for the intercalation of catalytically active rhodium complexes in swelling, layer-lattice silicates Inorg. Chem. 18 28402847.CrossRefGoogle Scholar
Raythatha, R. and Pinnavaia, T. J., 1981 Hydrogenation of 1,3-butadienes with a rhodium complex-layered silicate intercalation catalyst J. Organometallic Chem. 218 115122.CrossRefGoogle Scholar
Raythatha, R. and Pinnavaia, T. J., 1983 Clay intercalation catalysts interlayered with rhodium phosphine complexes. Surface effects on the hydrogenation and isomerization of 1-hexene J. Catal. 80 4755.CrossRefGoogle Scholar
Shabtai, J., 1979 Zeolites and cross-linked silicates as media for selective catalysis Chim. Ind. 61 734741.Google Scholar
Shabtai, J., 1980 A new class of cracking catalysts—acidic forms of cross-linked smectites U.S. Patent .Google Scholar
Shabtai, J., Frydman, N., Lazar, R., Bond, G. C., Wells, P. B. and Tompkins, F. C., 1976 Synthesis and catalytic properties of a l,4-diazabicyclo[2,2,2]octane-montmorillonite system—a novel type of molecular sieve Proc. 6th Internat. Congress Catal., London, 1976 London The Chem. Soc. 660666.Google Scholar
Shabtai, J. and Lahav, N., 1980 Cross-linked montmorillonite molecular sieves U.S. Patent .Google Scholar
Shabtai, J., Lazar, R., Oblad, A. G., Seiyama, T. and Tanabe, K., 1981 Acidicforms of cross-linked smectites—a novel type of cracking catalysts Proc. 7th Internat. Congress Catal. Tokyo, 1980 Tokyo Kodansha-Elsevier 828837.Google Scholar
Spurr, A. R., 1969 A low viscosity epoxy resin embedding medium for electron microscopy J. Ultrastruct. Res. 26 3143.CrossRefGoogle ScholarPubMed
Traynor, M. F., Mortland, M. M. and Pinnavaia, T. J., 1978 Ion exchange and intersalation reactions of hectorite with tris-bipyridil metal complexes Clays & Clay Minerals 26 318326.CrossRefGoogle Scholar
Tsai, G. M., 1983 Characterization of novel cross-linked smectite catalysts .Google Scholar
Vaughan, D. E. W., Lussier, R. J. and Rees, L. V. C., 1980 Preparation of molecular sieves based on pillared interlayered clays (PILC) Proc. 5th Internat. Conf. Zeolites, Naples, 1980 London Heyden 94101.Google Scholar
Vaughan, D. E. W., Lussier, R. J. and Magee, J. S., 1979 Pillared interlayered clay materials useful as catalysts and sorbents U.S. Patent .Google Scholar
Vaughan, D. E. W., Lussier, R. J. and Magee, J. S., 1981 Stabilized pillared interlayered clays U.S. Patent .Google Scholar
Vaughan, D. E. W., Lussier, R. J. and Magee, J. S., 1981 Pillared interlayered clay products U.S. Patent .Google Scholar
Yamanaka, S. and Brindley, G. W., 1979 High surface area solids obtained by reaction of montmorillonite with zir-conyl chloride Clays & Clay Minerals 27 119124.CrossRefGoogle Scholar