Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T17:15:48.088Z Has data issue: false hasContentIssue false

Cristobalite Authigenic Origin in Relation to Montmorillonite and Quartz Origin in Bentonites

Published online by Cambridge University Press:  01 July 2024

J. H. Henderson
Affiliation:
Department of Soil Science, University of Wisconsin, Madison, Wisc. 53706
M. L. Jackson
Affiliation:
Department of Soil Science, University of Wisconsin, Madison, Wisc. 53706
J. K. Syers
Affiliation:
Department of Soil Science, University of Wisconsin, Madison, Wisc. 53706
R. N. Clayton
Affiliation:
The Enrico Fermi Institute, University of Chicago, Chicago, Ill. 60637
R. W. Rex
Affiliation:
Department of Geological Sciences, University of California, Riverside, Calif. 92502
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Three kinds of opal-cristobalite, differentiated by the sharpness of the 4·1 Å XRD peak, were isolated from the Helms (Texas) bentonite by selective chemical dissolution followed by specific gravity separation. The δ18O value (oxygen isotope abundance) for these cristobalite isolates ranged from approximately 26–30‰ (parts per thousand), increasing with increased breadth of the 4·1 Å XRD peak. Opal-cristobalite isolated from the Monterey diatomite had a δ18O value of 34‰. These δ18O values are in the range for Cretaceous cherts (approximately 32‰) and are unlike the values of 9–11‰ obtained for low-cristobalite (XRD peaks at 4·05, 3·13, 2·4, and 2·49) formed hydrothermally or isolated from the vesicles of obsidian. The morphology pseudomorphic after diatoms, observed with the scanning electron microscope, was more apparent in the opal-cristobalite from the Monterey diatomite of Miocene age (approximately 10 million yr old) than in the spongy textured opal-cristobalite from the Helms bentonite, reflecting the 40 million yr available for crystallization since Upper Eocene.

The oxygen isotope abundance of Helms montmorillonite (δ18O = 26‰) indicates that it was formed in sea water while the δ18O values of the associated opal-cristobalite indicate that this SiO2 polymorph probably formed at approximately 25°C in meteoric water. Although both cristobalite and mont-montmorillonite in the bentonite were authigenic, the crystallization of the SiO2 phase apparently required a considerably longer period and occurred mainly after tectonic uplift.

In contrast to the results for cristobalite, quartz from the Helms and Upton (Wyoming) bentonites had δ18O values of 15 and 21‰ respectively. Such intermediate values, similar to those of aerosolic dusts of the Northern Hemisphere, loess, and many fluvial sediments and shales of the North Central United States (U.S.A.), preclude either a completely authigenic or a completely igneous origin for the quartz. These values probably result from a mixing of quartz from high and low temperature sources, detritally added to the ash or bentonite bed.

Résumé

Résumé

Trois variétés d’opale (cristobalite), différenciées par la finesse du pic de diffraction X à 4,1 Å, ont été isolées de la bentonite de Helms (Texas) par dissolution chimique sélective suivie d’une séparation par poids spécifique. La valeur δ 18O (abondance en oxygène isotopique) pour ces fractions isolées de cristobalite, varie d’environ 26‰ h 30%0 (parties pour mille), en augmentant quand la largeur dupic à 4,1 Å augmente. L’opale (cristobalite) isolée de la diatomite de Monterey a une valeur de δ 18O de 34‰ Ces valeurs de δ 1sO sont de l’ordre de celles que l’on trouve dons les silex crétaérs (environ 32‰) et sont différentes des 9 à 11‰ obtenus pour les cristobalites basse température (pics de diffraction X à 4, 05, 3, 2, 84 et 2, 49) formées par processus hydrothermal ou isolées de ésicules d’obsidienne. La morphologie pseudomorphe observée au microscope électronique à balayage elle est celle des diatomées, et ceci d’une façon plus apparente dans l’opale (cristobalite) provenant de la diatomite miocéne de Monterey (âge approximatif l0 millions d’années) que dans l’opale (cristobalite) à texture spongieuse de la bentonite de Helms, ce qui traduit les 40 millions d’années qui ont permis la cristallisation depuis l’éocéne supérieur.

L’abondance en oxygène isotopique de la montmorillonite de Helms (δ 18O = 26‰) indique que cette argile a été formée dans l’eau de mer, tandis que les valeurs de δ 18O de l’opale (cristobalite) associée indiquent que cette silice polymorphe s’est probablement formée à environ 25° dans l’eau atmosphérique. Quoique, à la fois la cristobalite et la montmorillonite de la bentonite soient authigénes, la cristallisation de la phase SiO2 a apparemment requis une période considérablement plus longue et s’est développée principalement après des soulèvements tectoniques.

Par opposition aux résultats concernant la cristobalite, les quartz des bentonites de Helms et de Upton (Wyoming) ont des valeurs de δ 18O respectivement de 15 et 21‰ De telles valeurs intermédiaires, semblables à celles des poussières éoliennes de l’Hémisphére Nord, du loess, et de nombreux sédiments fluxiaux et de schistes de la partie Nord du Centre des U.S.A., font écarter une origine soit complètement authigène, soit complètement ignée, pour le quartz. Ces valeurs résultent probablement d’un mélange de quartz formé à haute et à basse température, qui s’est ajouté selon un processus détritique à la cendre ou à la couche de bontinite.

Kurzreferat

Kurzreferat

Drei Arten yon Opal-Cristobalit, unterschieden dutch die Schäirfe des 4,1 Å XRD Peaks, wurden aus dem Helms (Texas) Bentonit durch selektive chemische Lösung mit nachfolgender Trennung nach dem spezifischen Gewicht abgesondert. Der δ 18O Wert (Sauerstoff Isotop Überfluss) für diese Cristobalitabsonderungen erstreckte sich von etwa 26 bis 30‰ (Promill), zunehmend mit zunehmender Breite des 4,1 A XRD Gipfels. Opal-Cristobalit, abgesondert aus Monterey Diatomit, hatte einen δ 18O Wert von 34‰ Diese δ 18O Werte sind im Bereich der kretazeischen Hornsteine (ca. 32%0) und sind verschieden von den Werten von 9 bis 11‰, erhalten für Niedrig-Cristobalite (XRD Gipfel bei 4,05, 3,13, 2,84 und 2,49), die hydrothermisch gebildet oder aus den Gesteinsbläischen von Obsidian abgesondert worden waren. Die Morphologie, pseudomorphisch nach Diatomeen, beobachtet mittels des abtastenden Elektronenmikroskops, war augenfäilliger im Opal-Cristobalit aus dem Monterey Diatomit aus dem Miozän (etwa 10 Millionen Jahre alt) als in dem Opal-Cristobalit mit Schwammgefüge aus dem Helm-Bentonit, was auf Grund der 40 Millionen Jahre, die seit dem oberen Eozän für die Kristallisation zur Verfügung standen, erklärlich ist.

Der Sauerstoff Isotop Überschuss des Helms Montmorillonit (δ 18O = 26‰ deutet darauf hin, dass er im Meerwasser gebildet wurde während die δ 18O Werte des assoziierten Opal-Cristobalit andeuten, dass dieses SiO2 Polymorph sich vermutlich bei etwa 25° in meteorischem Wasser gebildet hat. Obwohl Cristobalit als auch Montmorillonit im Bentonit am Fundorte entstanden waren, efforderte die Kristallisierung der SiO2 Phase scheinbar eine betrrächtlich längere Zeitspanne und erfolgte hauptsächlich nach tektonischer Aufwölbung.

Im Gegensatz zu den Ergebnissen für Cristobalit hatten Quarze aus den Helms und Upton (Wyoming) Bentoniten δ 18O Werte von 15 bzw. 21‰ Solche Zwischenwerte, ähnlich denen der Aerosolstaube in der nördlichen Hemisphäre, Löss und vieler fluvialer Sedimente und Schiefer der nördlichen mittleren Vereinigten Staaten, schliessen entweder vollständiges Entstehen am Fundort oder vollständigen Eruptivursprung des Quarzes aus. Diese Werte ergeben sich wahrscheinlich aus einer Mischung von Quarz aus Hoch- und Niedrigtemperaturquellen, geröllmässig zugefügt zu dem Asche-oder Bentonitlager.

Резюме

Резюме

С использованием метода селективного химического растворения с последующим разделением по удельному весу из бентонитов месторождения Хелмс (Техас) выделены три опал-кристобалита, различающиеся остротой пика 4,1 0А на рентгенограмме порошка. Значение δ 18O (изотопный состав кислорода) для этих кристобалитов находится в пределах от ~2б до 30‰, возрастая с увеличением ширины пика 4,1 0А. Опал-кристобалит, выделенный из диатомита Монтерея, характеризуется значением δ 18O в 34‰. Эти значения δ 18О попадают в пределы, характерные для меловых кремнистых сланцев (примерно 32‰) и отличаются от значений (от 9 до 11‰), полученных для низкотемпературного кристобалита (отражения на рентгенограммах порошка 4,05, 3,13, 2,84 и 2,49), образовавшегося гидротермальным путем и частью образующего выделения в пустотах обсидиана. Псевдоморфозы по диатомеям, которые обнаруживаются в сканирующем электронном микроскопе, более характерны для опал-кристобалита из миоценового (примерно 10 миллионов лет) диатомита Монтерея, чем для губчатого текстурированного опал-кристобалита из бентонитов Хелмса (кристаллизация в течение 40 миллионов лет — с верхнего эоцена).

Содержание изотопа кислорода в монтмориллоните из Хелмса (δ 18О = 26‰) указывает, что он образовался в морской воде; судя по значению δ 18O, находящийся в ассоциации с ним опал-кристобалит, вероятно, образовался при температуре около 25°С из вадозной воды. Хотя как кристобалит, так и монтмориллонит в бентоните являются аутигенными, кристаллизация SiO2, очевидно, требовала гораздо большего времени и происходила, главным образом, после тектонического поднятия.

В противоположность результатам, полученным для кристобалита, кварц из бентонитов месторождений Хелмс и Антон (Вайоминг) характеризуется значениями δ 18O соответственно 15 и 21 ‰. Подобные промежуточные значения, близкие к значениям, характерным для аэрозольной пыли Северного полушария, лёсса и многих речных осадков и сланцев северной части центра США, указывают на полностью аутигенное или полностью магматогенное происхождение кварца. Эти значения, возможно, являются следствием смешения кварца из высокотемпературных и низкотемпературных источников, привнесенного в пепел или бентонит.

Type
Research Article
Copyright
Copyright © 1971, The Clay Minerals Society

References

Brindley, G. W., (1957) Fullers earth from near Dry Branch, Georgia, a montmorillonite-cristobalite clay Clay Minerals Bull. 3 167169.CrossRefGoogle Scholar
Carozzi, A. V., (1960) Microscopic Sedimentary Petrography New York Wiley 485.Google Scholar
Carr, R. M. and Fyfe, W. S., (1958) Some observations on the crystallization of amorphous silica Am. Mineralogist 43 908916.Google Scholar
Chen, P.-Y., (1968) Geology and mineralogy of the white bentonite beds of Gonzales County, Texas .Google Scholar
Clayton, R. N. and Mayeda, T., (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis Geochim. Cosmochim. Acta 27 4352.CrossRefGoogle Scholar
Clayton, R. N., Rex, R. W., Syers, J. K. and Jackson, M. L., (1968) Oxygen isotope abundance in quartz from Pacific pelagic sediments 56.Google Scholar
Davis, J. C., (1970) Petrology of Cretaceous Mowry shale of Wyoming Am. Assoc. Petrol. Geol. Bull. 54 487502.Google Scholar
Degens, E. T. and Epstein, S., (1962) Relationship between 18O/16O in coexisting carbonates, cherts, and diatomites Am. Assoc. Petrol. Bull. 46 534542.Google Scholar
Epstein, S., Taylor, H. P. Jr. and Abelson, P., (1967) Variation of 18O/16O in minerals and rocks Researches in Geochemistry New York Wiley 2962.Google Scholar
Garlick, G. D. (1969) The stable isotopes of oxygen. Handbook of Geochemistry, Vol. II/1 (Edited by Wedepohl, K. H.) pp. 8-B-18-B-27, Springer-Verlag, New York.Google Scholar
Glenn, R. C., Jackson, M. L., Hole, F. D. and Lee, G. B., (1960) Chemical weathering of layer silicate clays in loess-derived Tama silt loam of southwestern Wisconsin Clays and Clay Minerals 8 6383.CrossRefGoogle Scholar
Greenwood, R., (1967) Thermal behavior of SiO2-X and its relation to the natural silica minerals Am. Mineralogist 52 16621668.Google Scholar
Gremillion, L. R., (1965) The origin of attapulgite in the Miocene strata of Florida and Georgia .Google Scholar
Grim, R. E., (1968) Clay Mineralogy 2nd Edn New York McGraw-Hill 596.Google Scholar
Gruner, J. W., (1940) Abundance and significance of cristobalite in bentonites anf fuller’s earth Econ. Geol. 35 867875.CrossRefGoogle Scholar
Hardjosoesastro, R. R., (1956) Preliminary note on cristobalite in clay fractions of volcanic ashes J. Soil Sci. 7 185188.CrossRefGoogle Scholar
Henderson, J. H., Jackson, M. L., Syers, J. K., Clayton, R. N., Rex, R. W. and Brown, J. L., (1971) Cristobalite and quartz isolation from soils, sediments, and rocks by hydrofluosilicic acid and heavy liquids Soil Sci. Soc. Am. Proc. .CrossRefGoogle Scholar
Jackson, M. L., (1956) Soil Chemical Analysis — Advanced Course .Google Scholar
Jackson, M. L., (1965) Clay transformation in soil genesis during the Quaternary Soil Sci. 99 1522.CrossRefGoogle Scholar
Jackson, M. L., Syers, J. K., Rex, R. W., Levelt, Th. W. M. Clayton, R. N., Sherman, G. D., Uehara, G. and Swindale, L. D., (1971) Geomorphological relationships of tropospherically-derived quartz in the soils of the Hawaiian Islands Soil Sci. Soc. Am. Proc. .CrossRefGoogle Scholar
Jonas, E. C., (1968) The character and origin of cristobalite in bentonites Abstracts of Papers, 17th Annual Clay Minerals Conf., Bloomington, Indiana 17.Google Scholar
Kiely, P. V. and Jackson, M. L., (1964) Selective dissolution of micas from potassium feldspars by sodium pyrosulfate fusion of soils and sediments Am. Mineralogist 49 16481659.Google Scholar
Kodama, H. and Brydon, J. E., (1966) Interstratified montmorillonite-mica clays from subsoils of the prairie provinces, western Canada Clays and Clay Minerals 13 151173.Google Scholar
Krauskopf, K. B., (1956) Dissolution and precipitation of silica at low temperatures Geochim. Cosmochim. Acta 10 126.CrossRefGoogle Scholar
Law, J. P. Jr. and Kunze, G. W., (1966) Reactions of surfactants with montmorillonite: Adsorption mechanisms Soil Sci. Soc. Am. Proc. 30 321327.CrossRefGoogle Scholar
Mopper, K. and Garlick, G., (1968) Oxygen isotope fractionation between biogenic silica and ocean water Am. Geophys. Union Trans. 49 336.Google Scholar
Papke, K. G., (1969) Montmorillonite deposits in Nevada Clays and Clay Minerals 17 211222.CrossRefGoogle Scholar
Park, D. E. Jr. and Croneis, C., (1969) Origin of Caballos and Arkansas novaculite formations Am. Assoc. Petrol Geol. Bull. 53 94111.Google Scholar
Perry, E. C., (1967) The oxygen isotope chemistry of ancient cherts Earth Planet. Sci. Lett. 3 6266.CrossRefGoogle Scholar
Peterson, N. M. A. and von der Borch, C. C., (1965) Chert: Modern inorganic deposition in a carbonate-precipitating locality Science 149 15011503.CrossRefGoogle Scholar
Rex, R. W., Syers, J. K., Jackson, M. L. and Clayton, R. N., (1969) Eolian origin of quartz in soils of Hawaiian Islands and in Pacific pelagic sediments Science 163 277279.CrossRefGoogle ScholarPubMed
Reynolds, W. R., (1966) Formation of cristobalite, zeolite and clay minerals in the Paleocene and Lower Eocene of Alabama .Google Scholar
Reynolds, R. C. Jr. and Anderson, D. M., (1967) Cristobalite and clinoptilite in bentonite beds of the Colville Group, northern Alaska J. Sediment. Petrol. 37 966969.CrossRefGoogle Scholar
Savin, S. M. and Epstein, S., (1970) The oxygen and hydrogen isotope geochemistry of clay minerals Geochim. Cosmochim. Acta 34 2542.CrossRefGoogle Scholar
Swindale, L. D. and Jackson, M. L., (1956) Genetic processes in some residual podzolized soils of New Zealand Trans. Intl. Soc. Soil Sci., 6th Congr. Parts 5 233239.Google Scholar
Swindale, L. D. and Jackson, M. L., (1960) A mineralogical study of soil formation in four rhyolite-derived soils from New Zealand N.Z. J. Geol. Geophys. 3 141183.CrossRefGoogle Scholar
Syers, J. K., Chapman, S. L., Jackson, M. L., Rex, R. W. and Clayton, R. N., (1968) Quartz isolation from rocks, sediments and soils for determination of oxygen isotopic composition Geochim. Cosmochim. Acta 32 10221025.CrossRefGoogle Scholar
Syers, J. K., Jackson, M. L., Berkehiser, V. E., Clayton, R. N. and Rex, R. W., (1969) Eolian sediment influence on pedogenesis during the Quaternary Soil Sci. 107 421427.CrossRefGoogle Scholar
Takeshi, H., Fujii, N. and Fukinuki, T., (1969) Transformation of montmorillonites in acid clay deposits by weathering Proc. Intl. Clay Conf., Tokyo 1 369382.Google Scholar
Taylor, H. P. Jr, (1968) The oxygen isotope geochemistry of igneous rocks Contr. Mineral. Petrol. 19 171.CrossRefGoogle Scholar
Van Valkenburg, A. Jr. and Buie, B. F., (1945) Octahedral cristobalite with quartz paramorphs from Ellora Caves, Hyderabad State, India Am. Mineralogist 30 526535.Google Scholar
Wada, K., (1969) Clay Minerals, Volcanic Ash Soils and Volcanoes Intl. Clay Conf. (Tokyo) Guide to field F. .Google Scholar