Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T12:59:04.518Z Has data issue: false hasContentIssue false

The Co-Ordination of Hydrated Cu(II)- and Ni(II)-Ions on Montmorillonite Surface

Published online by Cambridge University Press:  01 July 2024

Firmin Velghe*
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030 Heverlee, Belgium
Robert A. Schoonheydt
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030 Heverlee, Belgium
Jan B. Uytterhoeven
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030 Heverlee, Belgium
*
*Oleofina, Ertvelde, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The optical spectra of Cu2+ and Ni2+ on Camp Berteau montmorillonite after lyophilization and evacuation at room temperature are characteristic for the presence of Cu(H2O)42+ and Ni(H2O)62+ in the interlamellar space. The most probable ligand field parameters for Cu(H2O)2+4 are Dqxy = 1310 cm−1, Ds = 1807 cm−1 and Dt = 664cm−1. The covalent character of the Cu2+-OH2 bond is not negligible as indicated by the orbital reduction factors k∣∣2 = 0.66 and k2 = 0.76. This is also the case for Ni(H2O)62+ which is characterized by a ligand field strength, Dq = 850 cm−1 and an electronic repulsion parameter B = 920 cm−1. After desorption in vacuum the optical spectra of Cu2+ were poorly resolved, while Ni2+ was present partially as (Ol)3Ni2+, partially as (Ol)3Ni-OH2 where Ol means an oxygen of the hexagonal rings in the tetrahedral layers.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1977

References

Clementz, D. M., Pinnavaia, T. J. and Mortland, M. M. (1973) Stereochemistry of hydrated copper(II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study: J. Phys. Chem. 77, 196200.CrossRefGoogle Scholar
Clementz, D. M., Mortland, M. M. and Pinnavaia, T. J. (1974) Properties of reduced charge montmorillonites: hydrated Cu(II) ions as a spectroscopic probe: Clays and Clay Minerals 22, 4957.CrossRefGoogle Scholar
Cremers, A. and Thomas, H. C. (1966) Self-diffusion in suspensions. Sodium in montmorillonite at equilibrium: J. Phys. Chem. 70, 3229.CrossRefGoogle Scholar
De Wilde, W., Schoonheydt, R. A. and Uytterhoeven, J. B. (1977) Optical spectroscopy of hydrated and ammoniated Cu(II)-exchanged zeolites, type X and Y: Fourth Int. Conf. Molecular Sieves, Chicago, U.S.A., April 1977, ACS Symp. Ser. 40, 132143.CrossRefGoogle Scholar
Hathaway, B. J. and Billing, E. D. (1970) The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion: Coord. Chem. Rev. 5, 143207.CrossRefGoogle Scholar
Holmes, O. G. and McClure, D. S. (1957) Optical spectra of hydrated ions of the transition metals: J. Chem. Phys. 26, 16861696.CrossRefGoogle Scholar
Kivelson, D. and Neiman, R. (1961) ESR studies on the bonding in copper complexes: J. Chem. Phys. 35, 149155.CrossRefGoogle Scholar
Klier, K. and Ralek, M. (1968) Spectra of synthetic zeolites containing transition metal ions. II. Ni2+ ions in type A Linde molecular sieves: J. Phys. Chem. Solids 29, 951957.CrossRefGoogle Scholar
Kobinata, S. (1974) The electronic structures of Cu(II) complexes as determined by means of the configurational interaction method: Bull. Chem. Soc. Japan 47, 10851089.CrossRefGoogle Scholar
König, E. (1971) The nephelauxetic effect. Calculation and accuracy of the interelectronic repulsion parameters. I. Cubic high spin d 2, d 3, d 7 and d 8 systems: Struct. and Bonding 9, 175212.CrossRefGoogle Scholar
Kortüm, G. (1969) Reflectance Spectroscopy: Springer-Verlag, Berlin.CrossRefGoogle Scholar
Liehr, A. D. and Hallhausen, C. J. (1959) Complete theory of Ni(II) and V(III) in cubic crystalline fields: Ann. Phys. 2, 134155.CrossRefGoogle Scholar
Lever, A. B. P. (1968a) The electronic spectra of tetragonal metal complexes, analysis and significance: Coord. Chem. Rev. 3, 119140.CrossRefGoogle Scholar
Lever, A. B. P. (1968b) Inorganic Electronic Spectroscopy: Elsevier, Amsterdam.Google Scholar
McBride, M. B. (1976) Nitroxide spin probes on smectite surfaces. Temperature and solvation effects on the mobility of exchange cations: J. Phys. Chem. 80, 196203.CrossRefGoogle Scholar
Peigneur, P., Lunsford, J. H., De Wilde, W. and Schoonheydt, R. A. (1977) Spectroscopic characterization and thermal stability of copper(II) ethylenediamine complexes on solid surfaces. I. Synthetic faujasites X and Y: J. Phys. Chem. 81, 11791187.CrossRefGoogle Scholar
Pinnavaia, T. J. (1976) Orientation and mobility of hydrated metal ions in layer lattice silicates: Am. Chem. Soc. Symp. no. 34, Magnetic Resonance in Colloid and Interface Science, pp. 94108.CrossRefGoogle Scholar
Sindberg, J. D. and Snyder, D. G. (1972) Diffuse reflectance spectra of several clay minerals: Am. Miner. 57, 485–93.Google Scholar
Solomon, E. I. and Ballhausen, C. J. (1975) Identification of the structure of the 3T 1g(I) ← 3A 2g band in the Ni(H2O)2+6 complex: Molec. Phys. 29, 279–99.CrossRefGoogle Scholar
Tarasevich, Yu. I. and Sivolov, E. (1975a) Electron spectra of bivalent copper aquacations sorbed by montmorillonite: Kolloid Zh. 37, 814817.Google Scholar
Tarasevich, Yu.I. (1975b) The investigation of coordination compounds on the surface of layer silicates: Proc. Int. Conf. Colloid Surface Sci., Vol. 1, pp. 2731. Akademiai Kiado, Budapest.Google Scholar
Velghe, F., Schoonheydt, R. A., Uytterhoeven, J. B., Peigneur, P. and Lunsford, J. H. (1977) Spectroscopic characterization and thermal stability of copper(II) ethylenediamine complexes on solid surfaces. II. Montmorillonite: J. Phys. Chem. 81, 11871194.CrossRefGoogle Scholar