Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T13:45:46.032Z Has data issue: false hasContentIssue false

A comprehensive characterization of dioctahedral smectites

Published online by Cambridge University Press:  01 January 2024

Felicitas Wolters*
Affiliation:
Institute for Technical Chemistry, Water and Geotechnology Division, Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, 76021 Karlsruhe, Germany
Gerhard Lagaly
Affiliation:
Institute of Inorganic Chemistry, University of Kiel, D-24098 Kiel, Germany
Guenter Kahr
Affiliation:
ETH Zurich, Institute for Geotechnical Engineering, Schafmattstr. 6, 8093 Zürich, Switzerland
Katja Emmerich
Affiliation:
Institute for Technical Chemistry, Water and Geotechnology Division, Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, 76021 Karlsruhe, Germany Competence Center for Material Moisture, University of Karlsruhe, c/o Forschungszentrum Karlsruhe, ITC-WGT, P.O. Box 3640, 76021, Karlsruhe, Germany
*
Present address: Bergstraße 47, 58300 Wetter, (Ruhr), Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The term ‘montmorillonite’ encompasses a wide range of chemical compositions and structures. Comprehensive and reliable characterization is essential for unambiguous classification. Twenty eight purified, Na-exchanged smectites (<0.2 µm) were characterized by layer-charge measurement using the alkylammonium method, by cation exchange capacity (CEC) measurement with Cu-triethylenetetramine, by determination of the chemical composition using X-ray fluorescence analysis, by calculation of the structural formula following determination of the octahedral structure (trans-vacant vs. cis-vacant) by simultaneous thermal analysis, and by X-ray diffraction analysis. Mössbauer spectroscopy was applied to determine the oxidation state and coordination of Fe and changes thereof during purification of the source materials.

The charge derived from chemical composition was considerably greater (by up to 30%) than the measured layer charge. The independently measured layer charge was used to calculate the structural formula. The measured CEC values, comprising the permanent charges and the pH-dependent edge charges, were consistent with measured layer charge but not with layer charge derived from the chemical composition. Therefore, the structural formula of smectites should be calculated using the measured layer charge.

The dehydroxylation temperature, which conveys information about the structure of the octahedral sheet, was correlated to the amount of Mg and Fe3+ and the location of charges. No relationship was found among the dehydroxylation temperature and the mean layer charge or the Mg content. In contrast, a clear relationship was observed between the Fe content and the dehydroxylation temperature. Montmorillonites with an Fe content <0.3/f.u. are cis-vacant and those containing Fe3+ > 0.3 mol/f.u. are trans-vacant, mostly with additional cis-vacancies. Tetrahedral substitution also appeared to be a function of the number of trans-vacancies.

The parameters analyzed provide the basis for a new descriptive classification system.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Ammann, L. Bergya, F. and Lagaly, G., 2005 Determination of the cation exchange capacity of clays with copper complexes revisited Clay Minerals 40 441453 10.1180/0009855054040182.CrossRefGoogle Scholar
Bain, D.C. Smith, B.F.L. and Wilson, M.J., 1992 Chemical analysis Clay Mineralogy: Spectroscopic and Chemical Determinative Methods London Chapman & Hall 300322.Google Scholar
Bergaya, F. Lagaly, G. Vayer, M., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Cation and anion exchange Handbook of Clay Science Amsterdam Elsevier 9791001 10.1016/S1572-4352(05)01036-6.CrossRefGoogle Scholar
Besson, G. Drits, V.A. Daynyak, L.G. and Smoliar, B.B., 1987 Analysis of cation distribution in dioctahedral micaceous minerals on the basis of IR spectroscopy data Clay Minerals 22 465478 10.1180/claymin.1987.022.4.10.CrossRefGoogle Scholar
Bishop, J.L. Murad, E. and Dyar, M.D., 2002 The influence of octahedral and tetrahedral cation substitution on the structure of smectites as observed through infrared spectroscopy Clay Minerals 37 617628 10.1180/0009855023740064.CrossRefGoogle Scholar
Brigatti, M.F., 1983 Relationship between composition and structure in Fe-rich smectites Clay Minerals 18 177186 10.1180/claymin.1983.018.2.06.CrossRefGoogle Scholar
Brigatti, M.F. and Poppi, L., 1981 A mathematical model to distinguish the members of the dioctahedral smectite series Clay Minerals 16 8189 10.1180/claymin.1981.016.1.06.CrossRefGoogle Scholar
Carrado, K.A. Decarreau, A. Petit, S. Bergaya, F. Lagaly, G. and Wilson, M.J., 2006 Synthetic clay minerals and purification of natural minerals Clay Mineralogy: Spectroscopic and Chemical Determinative Methods London Chapman & Hall 115139.Google Scholar
Christidis, G.E. and Eberl, D.D., 2003 Determination of layer-charge characteristics Clays and Clay Minerals 51 644655 10.1346/CCMN.2003.0510607.CrossRefGoogle Scholar
Cuadros, J., 2002 Structural insights from the study of Cs-exchanged smectites submitted to wetting and drying cycles Clay Minerals 37 473486 10.1180/0009855023730046.CrossRefGoogle Scholar
Dohrmann, R. (1999) Aufbereitung der Tonminerale — Von der Probe zum Präparat In 2. European Workshop on Clay Mineralogy (and Bauer, A., editor). Jena, 15 pp.Google Scholar
Drits, V.A., 2003 Structural and chemical heterogeneity of layer silicates and clay minerals Clay Minerals 38 403432 10.1180/0009855033840106.CrossRefGoogle Scholar
Drits, V.A. Besson, G. and Muller, F., 1995 An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates Clays and Clay Minerals 43 718731 10.1346/CCMN.1995.0430608.CrossRefGoogle Scholar
Drits, V.A. Dainyak, L.G. Muller, F. Besson, G. and Manceau, A., 1997 Isomorphous cation distribution in celadonites, glauconites and Fe-Illites determined by infrared, Mössbauer and EXAFS spectroscopies Clay Minerals 32 153179 10.1180/claymin.1997.032.2.01.CrossRefGoogle Scholar
Drits, V.A. Lindgreen, H. Salyn, A.L. Ylagan, R. and McCarty, D.K., 1998 Semiquantitative determination of trans-vacant and cis-vacant 2:1 layers in illites and illite-smectites by thermal analysis and X-ray diffraction American Mineralogist 83 11881198 10.2138/am-1998-11-1207.CrossRefGoogle Scholar
Emmerich, K., 2000 Die geotechnische Bedeutung des Dehydroxilierungsverhaltens quellfähiger Tonminerale Zürich ETH 135 pp.Google Scholar
Emmerich, K. Wolters, F. Kahr, G. and Lagaly, G., 2009 Clay profiling: the classification of montmorillonites Clays and Clay Minerals 53 104114 10.1346/CCMN.2009.0570110.CrossRefGoogle Scholar
Gaudin, A. Grauby, O. Noack, Y. Decarreau, A. and Petit, S., 2004 The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). I. XRD and multi-scale approaches Clay Minerals 39 301316 10.1180/0009855043930136.CrossRefGoogle Scholar
Gaudin, A. Petit, S. Rose, J. Martin, F. Decarreau, A. Noack, Y. and Borschneck, D., 2004 The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches Clay Minerals 39 453467 10.1180/0009855043940147.CrossRefGoogle Scholar
Goodman, B.A. Russell, J.D. Fraser, A.R. and Woodhams, F.W.D., 1976 A Mössbauer and IR spectroscopy study of the structure of nontronite Clays and Clay Minerals 24 5359 10.1346/CCMN.1976.0240201.CrossRefGoogle Scholar
Grim, R.E. and Kulbicki, G., 1961 Montmorillonite: High temperature reactions and classification American Mineralogist 46 13291369.Google Scholar
Guggenheim, S. (1990) The dynamics of thermal decomposition in aluminous dioctahedral 2:1 layer silicates: A crystal chemical model. 9th International Clay Conference, 2, 99107, Strasbourg, France.Google Scholar
Güven, N. and Bailey, S.W., 1988 Smectites Hydrous Phyllosilicates Washington, D.C Mineralogical Society of America 497552 10.1515/9781501508998-018.CrossRefGoogle Scholar
Huheey, J.E. Keiter, E.A. and Keiter, R.L., 1993 Inorganic Chemistry: Principles of Structure and Reactivity New York Harper Collins.Google Scholar
Jasmund, K. and Lagaly, G., 1993 Tonminerale und Tone Darmstadt, Germany Steinkopff Verlag.CrossRefGoogle Scholar
Kaufhold, S. Dohrmann, R. Ufer, K. and Meyer, F.M., 2002 Comparison of methods for the quantification of montmorillonite in bentonites Applied Clay Science 22 145151 10.1016/S0169-1317(02)00131-X.CrossRefGoogle Scholar
Köster, H.M., 1977 Die Berechnung kristallchemischer Strukturformeln von 2:1 — Schichtsilikaten unter Berücksichtigung der gemessenen Zwischenschichtladungen und Kationenumtauschkapazitäten, sowie der Darstellung der Ladungsverteilung in der Struktur mittels Dreieckskoordinaten Clay Minerals 12 4554 10.1180/claymin.1977.012.1.03.CrossRefGoogle Scholar
Köster, H.M. Schwertmann, U., Jasmund, K. and Lagaly, G., 1993 Dreischichtminerale Tonminerale und Tone Darmstadt, Germany Steinkopff Verlag 3358 10.1007/978-3-642-72488-6_2.CrossRefGoogle Scholar
Köster, H.M. Ehrlicher, U. Gilg, H.A. Jordan, R. Murad, E. and Onnich, K., 1999 Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites Clay Minerals 34 579599 10.1180/000985599546460.CrossRefGoogle Scholar
Lagaly, G. (1989) Erkennung und Identifizierung von Tonmineralen mit organischen Stoffen Jahrestagung der DTTG 1989, pp. 86129.Google Scholar
Lagaly, G. and Mermut, A.R., 1994 Layer charge determination by alkylammonium ions Layer Charge Characteristics of 2:1 Silicate Clay Minerals Boulder, Colorado, USA The Clay Minerals Society 146.Google Scholar
Lagaly, G. and Weiss, A., 1971 Anordnung und Orientierung kationischer Tenside auf ebenen Silicatoberflächen Teil IV Kolloid-Zeitschrift und Zeitschrift für Polymere 243 4855 10.1007/BF01500614.CrossRefGoogle Scholar
Laird, D.A. Scott, A.D. and Fenton, T.E., 1989 Evaluation of the alkylammonium method of determining layer charge Clays and Clay Minerals 37 4146 10.1346/CCMN.1989.0370105.CrossRefGoogle Scholar
Madejová, J. Bujdák, J. Petit, S. and Komadel, P., 2000 Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (I) Mid-infrared region Clay Minerals 35 739751 10.1180/000985500547160.CrossRefGoogle Scholar
Manceau, A. Drits, V. Lanson, B. Chateigner, D. Wu, J. Huo, D. Gates, W.P. and Stucki, J.W., 2000 Oxidation-reduction mechanism of iron in dioctahedral smectites. II. Crystal chemistry of reduced Garfield nontronite American Mineralogist 85 153172 10.2138/am-2000-0115.CrossRefGoogle Scholar
Martin, R.T. Bailey, S.W. Eberl, D.D. Fanning, D.S. Guggenheim, S. Kodama, H. Pevear, D.R. Środoń, J. and Wicks, F.J., 1991 Report of The Clay Minerals Society nomenclature committee: Revised classification of clay materials Clays and Clay Minerals 39 333335 10.1346/CCMN.1991.0390315.CrossRefGoogle Scholar
Mayayo, M.J. Bauluz, B. and Gonzalez Lopez, J.M., 2000 Variations in the chemistry of smectites from the Calatayud Basin (NE Spain) Clay Minerals 35 365374 10.1180/000985500546837.CrossRefGoogle Scholar
Mehra, O.P. Jackson, M.L. and Swineford, A., 1960 Iron oxide removal from soils and clays by a dithionite-citrate-system buffered with sodium bicarbonate 7th National conference on Clays and Clay Minerals Washington, D.C Pergamon Press 317327.Google Scholar
Meier, L.P. and Kahr, G., 1999 Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tretraethylenepentamine Clay and Clay Minerals 47 386388 10.1346/CCMN.1999.0470315.CrossRefGoogle Scholar
Meunier, A., 2005 Clays Berlin Springer.Google Scholar
Olis, A.C. Malla, P.B. and Douglas, L.A., 1990 The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion Clay Minerals 25 3950 10.1180/claymin.1990.025.1.05.CrossRefGoogle Scholar
Petit, S. Caillaud, J. Righi, D. Madejová, J. Elsass, F. and Köster, H.M., 2002 Characterization and crystal chemistry of an Fe-rich montmorillonite from Ölberg, Germany Clay Minerals 37 283297 10.1180/0009855023720034.CrossRefGoogle Scholar
Rühlicke, G. and Kohler, E.E., 1981 A simplified procedure for determining layer charge by the n-alkylammonium method Clay Minerals 16 305307 10.1180/claymin.1981.016.3.08.CrossRefGoogle Scholar
Sainz-Diaz, C.I. Palin, E.J. Hernández-Laguna, A. and Dove, M.T., 2004 Effect of the tetrahedral charge on the order-disorder of the cation distribution in the octahedral sheet of smectites and illites by computational methods Clays and Clay Minerals 52 357374 10.1346/CCMN.2004.0520311.CrossRefGoogle Scholar
Schultz, L.G., 1969 Lithium and potassium absorption, dehydroxylation temperature and structural water content of aluminous smectites Clays and Clay Minerals 17 115149 10.1346/CCMN.1969.0170302.CrossRefGoogle Scholar
Singh, B.S. and Gilkes, R.J., 1991 A potassium rich beidellite from a laterite pallid zone in Western Australia Clay Minerals 26 233244 10.1180/claymin.1991.026.2.07.CrossRefGoogle Scholar
Stevens, R.E., 1945 A system for calculating analyses of micas and related minerals to end members U.S. Geological Survey Bulletin 950 101119.Google Scholar
Tributh, H. and Lagaly, G.A., 1986 Aufbereitung und Identifizierung von Boden- und Lagerstättentonen. I. Aufbereitung der Proben im Labor GIT Fachzeitschrift für das Laboratorium 30 524529.Google Scholar
Tributh, H. and Lagaly, G.A., 1986 Aufbereitung und Identifizierung von Boden- und Lagerstättentonen. II. Korngrößenanalyse und Gewinnung der Tonsubfraktion GIT Fachzeitschrift für das Laboratorium 30 771776.Google Scholar
Tsipursky, S.I. and Drits, V.A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique texture electron diffraction Clay Minerals 19 177192 10.1180/claymin.1984.019.2.05.CrossRefGoogle Scholar
Tunega, D. Goodman, B.A. Haberhauer, G. Reichenauer, T.G. Gerzabek, M.H. and Lischka, H., 2007 Ab initio calculations of relative stabilities of different structural arrangements in dioctahedral phyllosilicates Clays and Clay Minerals 55 220232 10.1346/CCMN.2007.0550211.CrossRefGoogle Scholar
Ufer, K. Roth, G. Kleeberg, R. Stanjek, H. Dohrmann, R. and Bergmann, J., 2004 Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach Zeitschrift für Kristallographie 219 519527.CrossRefGoogle Scholar
van Olphen, H., 1963 An Introduction to Clay Colloid Chemistry New York Interscience Publisher.Google Scholar
Vantelon, D. Montarges-Pelletier, E. Michot, L.J. Briois, V. Pelletier, and Thomas, F., 2003 Iron distribution in the octahedral sheet of dioctahedral smectites. An Fe-K-edge X-ray absorption spectroscopy study Physics and Chemistry of Minerals 30 4453 10.1007/s00269-002-0286-y.CrossRefGoogle Scholar
Vogt, K. and Köster, H.M., 1978 Zur Mineralogie, Kristallchemie und Geochemie einiger Montmorillonite aus Bentoniten Clay Minerals 13 2543 10.1180/claymin.1978.013.1.03.CrossRefGoogle Scholar
Wagner, F.E. and Kyek, A., 2004 Mössbauer Spectroscopy in Archeology: Introduction and Experimental Considerations Dordrecht, The Netherlands Kluwer Academic Publishers.Google Scholar
Weaver, C.E. and Pollard, L.D., 1973 The Chemistry of Clay Minerals Amsterdam Elsevier Scientific Publishers.Google Scholar
Wolters, F., 2005 Classification of Montmorillonites Germany Universität Karlsruhe 98 pp.Google Scholar
Wolters, F. and Emmerich, K., 2007 Thermal reactions of smectites — relation of dehydroxylation temperature to octahedral structure Thermochimica Acta 462 8088 10.1016/j.tca.2007.06.002.CrossRefGoogle Scholar