Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T22:09:13.840Z Has data issue: false hasContentIssue false

A Comparison of Point of Zero Charge Measurement Methodology

Published online by Cambridge University Press:  01 January 2024

Elena Cristiano
Affiliation:
Nuclear Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, California 94720, USA
Yung-Jin Hu
Affiliation:
Nuclear Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, California 94720, USA University of California Berkeley, Department of Chemistry, 420 Latimer Hall, Berkeley, California 94720, USA
Matthew Sigfried
Affiliation:
Savannah River National Laboratory, Savannah River Site, Aiken, South Carolina 29808, USA
Daniel Kaplan
Affiliation:
Savannah River National Laboratory, Savannah River Site, Aiken, South Carolina 29808, USA
Heino Nitsche*
Affiliation:
Nuclear Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, California 94720, USA University of California Berkeley, Department of Chemistry, 420 Latimer Hall, Berkeley, California 94720, USA
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Contaminant-transport modeling requires information about the charge of subsurface particle surfaces. Because values are commonly reused many times in a single simulation, small errors can be magnified greatly. Goethite (α-FeOOH) and pyrolusite (β-MnO2) are ubiquitous mineral phases that are especially contaminant reactive. The objective of the present study was to measure and compare the point of zero charge (PZC) using different methods. The pyrolusite PZC was measured with three methods: mass titration (MT) (PZC = 5.9±0.1), powder addition (PA) (PZC = 5.98±0.08), and isoelectric point, IEP (PZC = 4.4±0.1). The IEP measurement was in agreement with literature values. However, MT and PA resulted in a statistically larger PZC than the IEP measurement. The surface area of pyrolusite, 2.2 m2g−1, was too small to permit PZC determination by the potentiometric titration (PT) method. Goethite PZC values were measured using MT (7.5±0.1), PT (7.46±0.09), and PA (7.20±0.08). The present work presents the first reported instance where MT and PA have been applied to measure the point of zero charge of either pyrolusite or goethite. The results illustrate the importance of using multiple, complementary techniques to measure PZC values accurately.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2011

References

Appel, C. Ma, L.Q. Rhue, R.D. and Kennelley, E., 2003 Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility Geoderma 113 7793 10.1016/S0016-7061(02)00316-6.CrossRefGoogle Scholar
Atkinson, R.J. Posner, A.M. and Quirk, J.P., 1967 Adsorption of potential-determining ions at ferric oxideaqueous electrolyte interface Journal of Physical Chemistry 71 550558 10.1021/j100862a014.CrossRefGoogle Scholar
Chorover, J. and Amistadi, M.K., 2001 Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces Geochimica et Cosmochimica Acta 65 95109 10.1016/S0016-7037(00)00511-1.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., 1996 The Iron Oxides Weinheim, Germany Wiley-VCH.Google Scholar
Coston, J.A. Fuller, C.C. and Davis, J.A., 1995 Pb2+ and Zn2+ Adsorption by a natural aluminum-bearing and iron-bearing surface coating on an aquifer sand Geochimica et Cosmochimica Acta 59 35353547 10.1016/0016-7037(95)00231-N.CrossRefGoogle Scholar
Dixon, J.B. and Weed, S.B., 1989 Minerals in Soil Environments Madison, Wisconsin, USA. Soil Science Society of America 10.2136/sssabookser1.2ed.c5.CrossRefGoogle Scholar
Gaboriaud, F. and Ehrhardt, J., 2003 Effects of different crystal faces on the surface charge of colloidal goethite (alpha-FeOOH) particles: An experimental and modeling study Geochimica et Cosmochimica Acta 67 967983 10.1016/S0016-7037(02)00988-2.CrossRefGoogle Scholar
Gao, Y. and Mucci, A., 2001 Acid basere actions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethitein 0.7 M NaCl solution Geochimica et Cosmochimica Acta 65 23612378 10.1016/S0016-7037(01)00589-0.CrossRefGoogle Scholar
Healy, T.W. Herring, A.P. and Fuersten, D.W., 1966 Effect of crystal structure on surface properties of a series of manganese dioxides Journal of Colloid and Interface Science 21 435443 10.1016/0095-8522(66)90008-0.CrossRefGoogle Scholar
Hsi, C-KD and Langmuir, D., 1985 Adsorption of uranyl onto ferric oxyhydroxides: Application of the surface complexation site-binding model Geochimica et Cosmochimica Acta 49 19311941 10.1016/0016-7037(85)90088-2.Google Scholar
Hu, Y.-J. Schwaiger, L.K. Booth, C.H. Kukkadapu, R.K. Cristiano, E. Kaplan, D.I. and Nitsche, H., 2010 Molecular interactions of plutonium(VI) with synthetic manganese-substituted goethite Radiochimica Acta 98 655663 10.1524/ract.2010.1766.CrossRefGoogle Scholar
Jiratova, K., 1981 Isoelectric point of modified alumina Applied Catalysis 1 165167 10.1016/0166-9834(81)80004-8.CrossRefGoogle Scholar
Juang, R.S. and Wu, W.L., 2002 Adsorption of sulfateand copper(II) on goethite in relation to the changes of zeta potentials Journal of Colloid and Interface Science 249 2229 10.1006/jcis.2002.8240.CrossRefGoogle Scholar
Kaplan, D.I. Powell, B.A. Demirkanli, D.I. Fjeld, R.A. Molz, F.J. Serkiz, S.M. and Coates, J.T., 2004 Influence of oxidation states on plutonium mobility during long-term transport through an unsaturated subsurface environment Environmental Science & Technology 38 50535058 10.1021/es049406s.CrossRefGoogle ScholarPubMed
Keeney-Kennicutt, W.L. and Morse, J.W., 1985 The redox chemistry of Pu(V)O2+ + interaction with common mineral surfaces in dilute-solutions and seawater Geochimica et Cosmochimica Acta 49 25772588 10.1016/0016-7037(85)90127-9.CrossRefGoogle Scholar
Kosmulski, M., 2001 Chemical Properties of Mineral Surfaces Boca Raton, Florida, USA. CRC Press, Inc. 10.1201/9780585418049.Google Scholar
Kosmulski, M., 2002 The pH-dependent surface charging and the points of zero charge Journal of Colloid and Interface Science 253 7787 10.1006/jcis.2002.8490.CrossRefGoogle ScholarPubMed
Kosmulski, M., 2009 pH-dependent surface charging and points of zero charge IV. Update and new approach. Journal of Colloid and Interface Science 337 439448 10.1016/j.jcis.2009.04.072.Google ScholarPubMed
Kosmulski, M. Saneluta, C. and Maczka, E., 2003 Electrokinetic study of specific adsorption of cations on synthetic goethite Colloids and Surfaces A–Physicochemical and Engineering Aspects 222 119124.Google Scholar
McKenzie, R.M., Dixon, J.B. Weed, S.B., 1989 Manganese oxides and hydroxides Minerals in Soil Environments Madison, Wisconsin, USA Soil Science Society of America 439465.Google Scholar
Mullet, M. Fievet, P. Reggiani, J.C. and Pagetti, J., 1997 Surface electrochemical properties of mixed oxide ceramic membranes: Zeta-potential and surface charge density Journal of Membrane Science 123 255265 10.1016/S0376-7388(96)00220-7.CrossRefGoogle Scholar
Mustafa, S. Dilara, B. Nargis, K. Naeem, A. and Shahida, P., 2002 Surface properties of the mixed oxides of iron and silica Colloids and Surfaces A–Physicochemical and Engineering Aspects 205 273282.Google Scholar
Noh, J.S. and Schwarz, J.A., 1989 Estimation of thepo int of zero charge of simple oxides by mass titration Journal of Colloid and Interface Science 130 157164 10.1016/0021-9797(89)90086-6.CrossRefGoogle Scholar
O’Reilly, S.E. and Hochella, M.F., 2003 Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides Geochimica et Cosmochimica Acta 67 44714487 10.1016/S0016-7037(03)00413-7.CrossRefGoogle Scholar
Parks, G.A., 1965 Isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems Chemical Reviews 65 177198 10.1021/cr60234a002.CrossRefGoogle Scholar
Parks, G.A. and Bruyn, P.L.D., 1962 Zero point of charge of oxides Journal of Physical Chemistry 66 967974 10.1021/j100812a002.CrossRefGoogle Scholar
Powell, B.A. Fjeld, R.A. Kaplan, D.I. Coates, J.T. and Serkiz, S.M., 2005 Pu(V)O2+ adsorption and reduction by synthetic hematite and goethite Environmental Science & Technology 39 21072114 10.1021/es0487168.CrossRefGoogle ScholarPubMed
Pozas, R. Ocana, M. Morales, M.P. and Serna, C.J., 2002 Uniform nanosized goethite particles obtained by aerial oxidation in the FeS4+–Na2CO3 system Journal of Colloid and Interface Science 254 8794 10.1006/jcis.2002.8568.CrossRefGoogle ScholarPubMed
Prelot, B. Poinsignon, C. Thomas, F. Schouller, E. and Villieras, F., 2003 Structural-chemical disorder of manganese dioxides–1. Influence on surface properties at the solid-electrolyte interface. Journal of Colloid and Interface Science 257 7784 10.1016/S0021-9797(02)00013-9.CrossRefGoogle ScholarPubMed
Schwertmann, U. and Cornell, R.M., 1991 Iron Oxides in the Laboratory: Preparation and Characterization. Weinheim, Germany VCH Publishers.Google Scholar
Shaughnessy, D.A. Nitsche, H. Booth, C.H. Shuh, D.K. Waychunas, G.A. Wilson, R.E. Gill, H. Cantrell, K.J. and Serne, R.J., 2003 Molecular interfacial reactions between Pu(VI) and manganeseoxidemi nerals manganiteand hausmannite Environmental Science & Technology 37 33673374 10.1021/es025989z.CrossRefGoogle ScholarPubMed
Sigg, L. and Stumm, W., 1981 Thei nteractions of anions and weak acids with the hydrous goethite (α-FeOOH) surface Colloids and Surfaces 2 101117 10.1016/0166-6622(81)80001-7.CrossRefGoogle Scholar
Sposito, G., 1989 The Chemistry of Soils New York Oxford University Press.Google Scholar
Stumm, W., (1992 Chemistry of the Solid-Water Interface New York J. Wiley & Sons, Inc..Google Scholar
Stumm, W. and Morgan, J.J., 1981 Aquatic Chemistry New York Wiley-Interscience.Google Scholar
Tourinho, F.A. Campos, A.F.C. Aquino, R. Lara, M d S ^GJ and Depeyrot, J., 2002 Surface charge density determination in electric double layered magnetic fluids Brazilian Journal of Physics 32 501508 10.1590/S0103-97332002000300008.CrossRefGoogle Scholar
Trivedi, P. and Axe, L., 2001 Ni and Zn sorption to amorphous versus crystalline iron oxides: Macroscopic studies Journal of Colloid and Interface Science 244 221229 10.1006/jcis.2001.7970.CrossRefGoogle Scholar
Villalobos, M. Trotz, M.A. and Leckie, J.O., 2003 Variability in goethite surface site density: evidence from proton and carbonatesorpt ion Journal of Colloid and Interface Science 268 273287 10.1016/j.jcis.2003.07.044.CrossRefGoogle Scholar
Wilson, R.E. (2005) Reactions of Plutonium(VI) with the Iron Oxide Goethite. Thesis, University of California at Berkeley, California, USA.Google Scholar