Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T16:27:10.077Z Has data issue: false hasContentIssue false

Comparison of Orientations of OH-Bonds in Layer Silicates by Diffraction Methods and Electrostatic Calculations

Published online by Cambridge University Press:  02 April 2024

A. S. Bookin
Affiliation:
Geological Institute, Academy of Sciences, Pyzhevsky 7, Moscow, USSR 109017
V. A. Drits
Affiliation:
Geological Institute, Academy of Sciences, Pyzhevsky 7, Moscow, USSR 109017
I. V. Rozdestvenskaya
Affiliation:
Geological Department, Leningrad State University, Leningrad, USSR
T. F. Semenova
Affiliation:
Geological Department, Leningrad State University, Leningrad, USSR
S. I. Tsipursky
Affiliation:
Geological Institute, Academy of Sciences, Pyzhevsky 7, Moscow, USSR 109017
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Orientations of OH-vectors in structural hydroxyl groups of layer silicates were defined both from diffraction data and calculations of electrostatic energy. The comparison of the results showed that for the hydroxyls of the 2:1 layers of chlorites and micas the positions of the hydroxyl protons are mainly determined by electrostatics. For the hydroxyls of dickite, amesite, and the brucitic sheets of chlorite, the results derived by the two methods differed systematically from each other, pointing to a change in the nature of the bond in these OH-groups.

Резюме

Резюме

Ориентация ОН-векторов структурных гидроксильных групп слоистых силикатов была определена как из дифракционных данных, так и из расчетов электростатической энергии. Сравнение результатов показало, что для гидроксилов 2:1 слоев слюд и хлоритов положение гидроксильных протонов в значительной степени определяется электростатикой. Для гидроксилов диккита, амезита, и бруситовой сетки хлоритов результаты, даваемые этими двумя методами, систематически отличаются друг от друга, что указывает на изменения в природе химических связей для этих ОН-групп.

Resümee

Resümee

Die Orientierungen von OH-Vektoren in strukturellen Hydroxylgruppen von Schichtsilikaten wurden sowohl durch Diffraktionsergebnisse als auch durch Berechnungen der elektrostatischen Energie bestimmt. Der Vergleich der Ergebnisse zeigt, daß für die OH-Gruppen der 2:1 Lagen von Chlorit und Glimmer die Lagen des Hydroxylprotons vor allem durch die elektrostatischen Verhältnisse bestimmt werden. Für die Hydroxylgruppen von Dickit, Amesit, und den Brucitlagen von Chlorit weichen die Resultate, die bei beiden Methoden erhalten wurde, systematisch voneinander ab, was auf eine Änderung des Bindungscharakters in diesen OH-Gruppen hindeutet. [U.W.]

Résumé

Résumé

Les orientations de vecteurs-OH dans des groupes hydroxyles structuraux de silicates à couches ont été définies à partir de données de diffraction et de calculs d’énergie électrostatique. La comparaison des résultats a montré que pour les hydroxyles des couches 2:1 de chlorites et de micas, les positions des protons hydroxyles étaient principalement déterminées par l’électrostatique. Pour les hydroxyles de dickite, d'amésite, et les feuillets brucitiques de chlorite, les résultats dérivés par les deux méthodes différaient systématiquement l'un de l'autre, indiquant un changement de la nature de la liaison dans les groupes-OH. [D.J.]

Type
Research Article
Copyright
Copyright © 1982, The Clay Minerals Society

References

Anderson, C. S. and Bailey, S. W., 1981 A new cation ordering pattern in amesite-2ff2 Amer. Mineral. 66 185195.Google Scholar
Bookin, A. S., Dainyak, L. G., Drits, V. A. and Vinokurov, V. M., 1978 Calculations of the electric field gradients in the layer silicates on the basis of a structural modeling Problems of Isomorphism Kazan Kazan University 5362.Google Scholar
Bookin, A. S. and Drits, V. A., 1982 Factors affecting orientation of OH-vector in micas Clay & Clay Minerals 30 415421.CrossRefGoogle Scholar
Cruz, M., Jacobs, H., Fripiat, J. J. and Serratosa, J. M., 1973 Thenatureof the interlayer bonding in kaolin minerals Proc. Int. Clay Conf., Madrid, 1972 Madrid Div. Ciencias, C.S.I.C. 3544.Google Scholar
Datta, P., Giese, R. F. Jr., 1973 Hydroxyl orientation in muscovite polymorphs Z. Krist. 137 436438.Google Scholar
Farmer, V. C. and Farmer, V. C., 1974 The layer silicates The Infrared Spectra of Minerals London Mineraological Society 331363.CrossRefGoogle Scholar
Giese, R. F. Jr., 1971 Hydroxyl orientation in muscovite as indicated by electrastatic energy calculations Science 172 263.CrossRefGoogle ScholarPubMed
Giese, R. F. Jr., 1976 Hydroxyl orientations in gibbsite and bayerite Acta Crystallogr. B32 17191723.CrossRefGoogle Scholar
Giese, R. F. Jr., 1979 Hydroxyl orientations in 2:1 phyllosilicates Clays & Clay Minerals 27 213223.CrossRefGoogle Scholar
Giese, R. F. Jr., 1980 Hydroxyl orientations and interlayer bonding in amesite Clays & Clay Minerals 28 8186.CrossRefGoogle Scholar
Giese, R. F. Jr. and Datta, P., 1973 Hydroxyl orientation in kaolinite, dickite, and nacrite Amer. Mineral. 58 471479.Google Scholar
Giese, R. F. Jr., Weller, S. and Datta, P., 1971 Electrostatic energy calculations of diaspore (α-AlOOH), goethite (α-FeOOH) and groutite (αMnOOH) Z. Krist. 134 275284.Google Scholar
Hall, S. H. and Bailey, S. W., 1979 Cation ordering pattern in amesite Clays & Clay Minerals 27 241247.CrossRefGoogle Scholar
Joswig, W., 1972 Neutronenbeugungsmessungen an einem lM-phlogopite Neues Jahrb. Mineral. Monatsh. H1 111.Google Scholar
Joswig, W., Fuess, H., Rothbauer, R., Takeuchi, Y. and Mason, S. A., 1980 A neutron diffraction study of one-layer triclinic chlorite Amer. Mineral. 65 349360.Google Scholar
Kalinichenko, A. M., Litovchenko, A. S., Mat’ash, I. V., Polshin, E. V. and Ivanitsky, V. P., 1973 Peculiarities of Crystallochemistry of Layer Silicates by the Methods of Radiospectroscopy Kiev Naukova Dumka.Google Scholar
Kukovsky, E. G., 1973 The Transformations of Layer Silicates Kiev Naukova Dumka.Google Scholar
Liebich, B. W., Sarp, M. and Parthe, E., 1979 The crystal structure of chantalite, CaAl2(OH)2Si04 Z. Krist. 150 5363.CrossRefGoogle Scholar
Lipson, H. and Cochran, W., 1953 The Determination of Crystal Structures London Bell and Sons Ltd..Google Scholar
Norrish, K. and Serratosa, J. M., 1973 Factors in the weathering of mica to vermiculite Proc. Int. Clay Conf., Madrid, 1972 Madrid Div. Ciencias, C.S.I.C. 417432.Google Scholar
Pavlishin, V. I., Semenova, T. F. and Rozdestvenskaya, I. V., 1981 Protolithionite 3T: structure, typomorphism and practical importance Mineralogitchesky Zh. 3 4760.Google Scholar
Phillips, T.L., Loveless, J.K. and Bailey, S.W., 1980 Cr3+ coordination in chlorites: a structural study of ten chromian chlorites Amer. Mineral. 65 112122.Google Scholar
Rothbauer, R., 1971 Untersuchung eines 2MrMuscovits mit neutronenstrahlen N. Jahrb. Mineral. Monatsh. H4 143154.Google Scholar
Rozdestvenskaya, I. V., Drits, V. A., Bookin, A. S. and Finko, V. I., 1982 Location of protons and structural peculiarities of dickite Mineralogitchesky Zh. 4 2532.Google Scholar
Swanson, T. H. and Bailey, S. W., 1981 Redetermination of the lepidolite-2A7, structure Clays & Clay Minerals 29 8190.CrossRefGoogle Scholar
Tsipursky, S. I., 1979 The refinement of the crystal structure of celadonite by electron diffraction oblique texture method with electronometric measurements of intensity Proc. VIII Conf. X-ray Studying of Mineral Raw Materials, Moscow, 1979 Moscow IGEM Publ. 61.Google Scholar
Tsipursky, S. I. and Drits, V. A., 1977 Efficiency of the electronometric measurement of intensity for the study of crystal structures Izvest. Akad. Nauk SSSR, Phys. Series 41 22632271.Google Scholar
Wieckowski, T. and Wiewiova, A., 1976 New approach to the problem of the interlayer bonding in kaolinite Clays & Clay Minerals 24 219223.CrossRefGoogle Scholar