Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T11:37:20.258Z Has data issue: false hasContentIssue false

Comparison of I/S Transformation and Maturity of Organic Matter at Elevated Temperatures

Published online by Cambridge University Press:  28 February 2024

B. Velde
Affiliation:
Département de Géologie, UR 1316 CNRS, École Normale Supérieure, 24 rue Lhomond, 75213 Paris, France
B. Lanson
Affiliation:
Département de Géologie, UR 1316 CNRS, École Normale Supérieure, 24 rue Lhomond, 75213 Paris, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Comparing the state of reaction advancement of I/S (illite content of illite/smectite mixed layer minerals) and organic matter (vitrinite reflectance) in instances of high temperature gradients allows one to observe the evolution of geologic materials under extreme conditions. In a geothermally heated sedimentary series (Salton Sea area, California), both clays and organics have reacted to completion in the temperature gradient range of 200°-400oC/km during heating episodes of 104 years. We observed an instance of rapid heating, through magmatic intrusion into the Meso-Paleozoic eastern Paris Basin sedimentary series in late Permian time, which induced changes in the organic material, but where clays are apparently unaffected.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Barker, C. E., 1991 Implications for organic maturation studies of evidence for geologically rapid increase and stabilization of vitrinite reflectance at peak temperature Cerro Prieto geothermal system, Mexico, Amer. Assoc. Petrol. Geol. Bull. 75 18521863.Google Scholar
Barker, C. E. and Elders, W. A., 1981 Vitrinite reflectance geothermometry and apparent heating duration in the Cerro Prieto geothermal field Geothermics 10 207223 10.1016/0375-6505(81)90005-5.CrossRefGoogle Scholar
Bethke, C. M. and Altaner, S. P., 1986 Layer-by-layer mechanisms of smectite illitization and application to a new rate law Clays & Clay Minerals 34 136145 10.1346/CCMN.1986.0340204.CrossRefGoogle Scholar
Durand, B., Alpern, B., Pittion, J. L., Pradier, B. and Burrus, J., 1986 Reflectance of vitrinite as a control of thermal history of sediments Thermal Modeling in Sedimentary Basins 441474.Google Scholar
Dutta, N. C. and Burrus, J., 1986 Shale compaction, burial diagenesis and geopressures: A dynamic model solution and some results in thermal modeling in sedimentary basins Thermal Modeling in Sedimentary Basins 149172.Google Scholar
Eberl, D. and Hower, J., 1976 Kinetics of illite formation Geol. Soc. Ame. Bull. 87 161172 10.1130/0016-7606(1976)87<161:SGAVIT>2.0.CO;2.Google Scholar
Elders, W. A., Bird, D. K., Williams, A. E. and Schiffman, P., 1984 Hydrothermal flow regime and magmatic heat source of the Cerro Prieto geothermal system, Baja California, Mexico Geothermics 13 2747 10.1016/0375-6505(84)90005-1.CrossRefGoogle Scholar
Espitalié, J. and Burrus, J., 1986 Use of Tmax as a maturation index for different types of organic matter, Comparison with vitrinite reflectance Thermal Modeling in Sedimentary Basins .Google Scholar
Howard, J. J. and Roy, D. M., 1985 Development of layer charge and kinetics of experimental smectite alteration Clays & Clay Minerals 33 8188 10.1346/CCMN.1985.0330201.CrossRefGoogle Scholar
Huang, Wuu-Liang, 1993 An Experimentally Derived Kinetic Model for Smectite-to-Illite Conversion and Its Use as a Geothermometer Clays and Clay Minerals 41 2 162177 10.1346/CCMN.1993.0410205.CrossRefGoogle Scholar
Jennings, S. and Thompson, G. R., 1986 Diagenesis of Plio-Pleistocene sediments of the Colorado River delta, Southern California J. Sed. Petr. 56 8998.Google Scholar
Lanson, B., 1990 Mise en Evidence des Mechanismes de Transformation des Interstratifiés Illite/Smectite au Cours de la Diagenèse .Google Scholar
Lanson, Bruno, 1992 Characterization of the End of Smectite-to-Illite Transformation: Decomposition of X-ray Patterns Clays and Clay Minerals 40 1 4052 10.1346/CCMN.1992.0400106.CrossRefGoogle Scholar
Lanson, B. and Champion, D., 1991 The I/S to illite reaction in the late stage diagenesis Amer. J. Sci. 291 473506 10.2475/ajs.291.5.473.CrossRefGoogle Scholar
Moore, D. C. and Reynolds, R. C., 1989 X-ray Diffraction and Identification of Clay Minerals Oxford Oxford University Press.Google Scholar
Price, L. C., 1983 Geologic time as a parameter in organic metamorphism and vitrinite reflectance as an absolute paleo-geothermometer J. Petrol. Geol. 6 538 10.1111/j.1747-5457.1983.tb00260.x.CrossRefGoogle Scholar
Roberson, H. E. and Lahann, R. W., 1981 Smectite to illite conversion rates: Effect of solution chemistry Clays & Clay Minerals 29 129135 10.1346/CCMN.1981.0290207.CrossRefGoogle Scholar
Sweeney, J. J. and Burnham, A. K., 1990 Evaluation of a simple model of vitrinite reflectance based on chemical kinetics Ame. Assoc. Petrol. Geol. Bull. 74 15591570.Google Scholar
Velde, B., Suzuki, T. and Nicot, E., 1986 Pressure-temperature-composition control of illite/smectite mixed layer minerals: Niger delta mudstones and other examples Clays & Clay Minerals 34 435441 10.1346/CCMN.1986.0340410.CrossRefGoogle Scholar
Velde, B. and Vasseur, G., 1992 Estimation of the diage-netic smectite to illite transformation in time-temperature space Amer. Mineral. 77 967976.Google Scholar
Yau, Y.-C. Peacor, D. R. and McDowell, S. D., 1987 Smectite to illite reactions in Salton Sea shales: A transmission and analytical electron microscope study J. Sed. Petr. 57 335342.Google Scholar