Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T10:42:59.078Z Has data issue: false hasContentIssue false

Clay profiling: The classification of montmorillonites

Published online by Cambridge University Press:  01 January 2024

Katja Emmerich*
Affiliation:
Competence Center for Material Moisture, University of Karlsruhe, c/o Forschungszentrum Karlsruhe, ITC-WGT, P.O. Box 3640, 76021 Karlsruhe, Germany Institute for Technical Chemistry, Water and Geotechnology Division, Forschungszentrum Karlsruhe GmbH, PO Box 3640, 76021 Karlsruhe, Germany
Felicitas Wolters*
Affiliation:
Institute for Technical Chemistry, Water and Geotechnology Division, Forschungszentrum Karlsruhe GmbH, PO Box 3640, 76021 Karlsruhe, Germany
Guenter Kahr
Affiliation:
ETH Zurich, Institute of Geotechnical Engineering, Schafmattstr. 6, 8093 Zurich, Switzerland
Gerhard Lagaly
Affiliation:
Institute of Inorganic Chemistry, University of Kiel, D24098 Kiel, Germany
*
* E-mail address of corresponding author: [email protected]
Present address: Bergstrasse 47, 58300 Wetter (Ruhr), Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Montmorillonites, with the general composition where x = ξ = 0.2–0.6, x = y+z, and yz, vary widely in composition and structure. The commonly used classification into five montmorillonite and two beidellite groups for the solid-solution sequence does not allow an unambiguous classification with respect to structural features and the resulting properties.

The smectite structure reveals five features that allow an unambiguous description of a sample: (1) identification as either a dioctahedral or a trioctahedral smectite; (2) layer charge; (3) charge distribution between tetrahedral and octahedral sheets; (4) cation distribution within the octahedral sheet; and (5) Fe content. In addition, the nature of interlayer cations should be given as they influence certain properties of montmorillonites. Analytical methods are now available to measure and determine these structural features. Therefore, a precise classification for montmorillonites requires determination of layer charge and exchangeable cations, analysis of chemical composition, and thermal analysis (to determine the octahedral structure), in addition to X-ray diffraction analysis.

A comprehensive classification of montmorillonites based on these parameters is proposed. Ninety-six structural variations (expressed by systematic names) theoretically exist within the montmorillonite-beidellite series. Descriptive names can be used to elucidate the macroscopic properties of the montmorillonite samples in question.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Bailey, S.W., 1980 Summary of recommendations of AIPEA nomenclature committee Clays and Clay Minerals 28 7378 10.1346/CCMN.1980.0280114.Google Scholar
Bailey, S.W., 1982 Nomenclature for regular interstratifications American Mineralogist 67 394398.Google Scholar
Bergaya, F. Lagaly, G. Vayer, M., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Cation and anion exchange Handbook of Clay Science Amsterdam Elsevier 9791001 10.1016/S1572-4352(05)01036-6.CrossRefGoogle Scholar
Brigatti, M.F., 1983 Relationship between composition and structure in Fe-rich smectites Clay Minerals 18 177186 10.1180/claymin.1983.018.2.06.CrossRefGoogle Scholar
Brigatti, M.F. and Poppi, L., 1981 A mathematical model to distinguish the members of the dioctahedral smectite series Clay Minerals 16 8189 10.1180/claymin.1981.016.1.06.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G., 1980 Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 495 pp.CrossRefGoogle Scholar
Brindley, G.W. and Pedro, G., 1972 Report of the AIPEA Nomenclature Committee AIPEA Newsletter 4 813.Google Scholar
Brown, G., 1955 Report of the clay minerals group subcommittee on nomenclature of clay minerals Clay Minerals Bulletin 2 294301 10.1180/claymin.1955.002.13.12.CrossRefGoogle Scholar
Carrado, K.A. Decarreau, A. Petit, S. Bergaya, F. Lagaly, G., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Synthetic clay minerals and purification of natural clays Handbook of Clay Science Amsterdam Elsevier 115139 10.1016/S1572-4352(05)01004-4.CrossRefGoogle Scholar
Christidis, G.E. and Eberl, D.D., 2003 Determination of layer-charge characteristics Clays and Clay Minerals 51 644655 10.1346/CCMN.2003.0510607.CrossRefGoogle Scholar
Číčel, B. and Komadel, P., 1994 Structural formulae of layer silicates Quantitative Methods in Soil Mineralogy Madison, Wisconsin, USA Miscellaneous Publication, Soil Science Society of America 114136.Google Scholar
Cole, W.F., 1955 Interpretation of differential thermal curves of mixed-layer minerals of illite and montmorillonite Nature 175 384385 10.1038/175384a0.CrossRefGoogle Scholar
Cole, W.F. Hosking, J.S. and Mackenzie, R.C., 1957 Clay mineral mixtures and interstratified minerals The Differential Thermal Investigation of Clays London Mineralogical Society 248274.Google Scholar
Dohrmann, R. (1999) Aufbereitung der Tonminerale — Von der Probe zum Präparat In 2. European Workshop on Clay Mineralogy (and Bauer, A., editor). Jena.Google Scholar
Drits, V.A., 2003 Structural and chemical heterogeneity of layer silicates and clay minerals Clay Minerals 38 403432 10.1180/0009855033840106.CrossRefGoogle Scholar
Drits, V.A. Besson, G. and Muller, F., 1995 An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates Clays and Clay Minerals 43 718731 10.1346/CCMN.1995.0430608.CrossRefGoogle Scholar
Drits, V.A. Lindgreen, H. Salyn, A.L. Ylagan, R. and McCarty, D.K., 1998 Semiquantitative determination of trans-vacant and cis-vacant 2:1 layers in illites and illite-smectites by thermal analysis and X-ray diffraction American Mineralogist 83 11881198 10.2138/am-1998-11-1207.CrossRefGoogle Scholar
Drits, V.A. Lindgreen, H. Sakharov, B.A. Jakobsen, H.J. and Zviagina, B.B., 2004 The detailed structure and origin of clay minerals at the Cretaceous/Tertiary boundary, Stevns Klint (Denmark) Clay Minerals 39 367390 10.1180/0009855043940141.CrossRefGoogle Scholar
Drits, V.A. McCarty, D.K. and Zviagina, B.B., 2006 Crystal-chemical factors responsible for the distribution of octahedral cations over trans- or cis-cites in dioctahedral 2:1 layer silicates Clays and Clay Minerals 54 131152 10.1346/CCMN.2006.0540201.CrossRefGoogle Scholar
Emmerich, K., 2000 Spontaneous rehydroxylation of a dehydroxylated cis-vacant montmorillonite Clay and Clay Minerals 48 405408 10.1346/CCMN.2000.0480312.CrossRefGoogle Scholar
Emmerich, K. Madsen, F.T. and Kahr, G., 1999 Dehydroxylation behavior of heat-treated and steam treated homoionic cis-vacant montmorillonites Clays and Clay Minerals 47 591604 10.1346/CCMN.1999.0470506.CrossRefGoogle Scholar
Emmerich, K. and Wolters, F., 2005 The role of cross-checks for the classification of montmorillonites Berichte der Deutschen Ton- und Tonmineralgruppe 11 14.Google Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. and Drits, V.A., 2005 Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties American Mineralogist 90 13581374 10.2138/am.2005.1776.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. Geoffroy, N. Jacquot, E. and Drits, V.A., 2007 Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part II. Influence of layer charge and charge location American Mineralogist 92 17311743 10.2138/am.2007.2273.CrossRefGoogle Scholar
Greene-Kelly, R., 1955 Dehydration of montmorillonite minerals Mineralogical Magazine 30 604615 10.1180/minmag.1955.030.228.06.CrossRefGoogle Scholar
Grim, R.E. and Kulbicki, G., 1961 Montmorillonite: High temperature reactions and classification American Mineralogist 46 13291369.Google Scholar
Guggenheim, S. Adams, J.M. Bain, D.C. Bergaya, F. Brigatti, M.F. Drits, V. Formoso, M.L. Galán, E. Kogure, T. and Stanjek, H., 2006 Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l‘Etude des Argiles (AIPEA) Nomenclature Committee for 2006 Clays and Clay Minerals 54 761772 10.1346/CCMN.2006.0540610.CrossRefGoogle Scholar
Güven, N. and Bailey, S.W., 1988 Smectites Hydrous Phyllosilicates Washington, D.C Mineralogical Society of America 497552 10.1515/9781501508998-018.CrossRefGoogle Scholar
Harvey, C. Lagaly, G., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Conventional applications Handbook of Clay Science Amsterdam Elsevier 501540 10.1016/S1572-4352(05)01016-0.CrossRefGoogle Scholar
Heller, L. Farmer, V.C. Mackenzie, R.C. Mitchell, B.D. and Taylor, H.F.W., 1962 The dehydroxylation and rehydroxylation of triphormic dioctahedral clay minerals Clay Minerals Bulletin 5 5672 10.1180/claymin.1962.005.28.02.CrossRefGoogle Scholar
Hofmann, U. Endell, K. and Wilm, D., 1933 Kristallstruktur und Quellung von Montmorillonit Zeitschrift für Kristallographie 86 340349.CrossRefGoogle Scholar
Hofmann, U. and Kiemen, R., 1950 Verlust der Austauschfähigkeit von Lithiumionen aus Bentonit durch Erhitzung Zeitschrift für Anorganische und Allgemeine Chemie 262 9599 10.1002/zaac.19502620114.CrossRefGoogle Scholar
Janek, M. Komadel, P. and Lagaly, G., 1997 Effect of autotransformation on the layer charge of smectites determined by the alkylammonium method Clay Minerals 32 623632 10.1180/claymin.1997.032.4.12.CrossRefGoogle Scholar
Jasmund, K. and Lagaly, G., 1993 Tonminerale und Tone Darmstadt, Germany Steinkopff Verlag.CrossRefGoogle Scholar
Kaufhold, S. Dohrmann, R. Ufer, K. and Meyer, F.M., 2002 Comparison of methods for the quantification of montmorillonite in bentonites Applied Clay Science 22 145151 10.1016/S0169-1317(02)00131-X.CrossRefGoogle Scholar
Köster, H.M., 1977 Die Berechnung kristallchemischer Strukturformeln von 2:1 — Schichtsilikaten unter Berücksichtigung der gemessenen Zwischenschichtladungen und Kationenumtauschkapazitäten, sowie der Darstellung der Ladungsverteilung in der Struktur mittels Dreieckskoordinaten Clay Minerals 12 4554 10.1180/claymin.1977.012.1.03.CrossRefGoogle Scholar
Köster, H.M., 1979 Die chemische Silikatanalyse Heidelberg, Germany Springer-Verlag 6162 10.1007/978-3-642-67275-0.CrossRefGoogle Scholar
Köster, H.M. Schwertmann, U., Jasmund, K. and Lagaly, G., 1993 Dreischichtminerale Tonminerale und Tone Darmstadt, Germany Steinkopf Verlag 3358 10.1007/978-3-642-72488-6_2.CrossRefGoogle Scholar
Lagaly, G., 1981 Characterization of clays by organic compounds Clay Minerals 16 121 10.1180/claymin.1981.016.1.01.CrossRefGoogle Scholar
Lagaly, G. and Mermut, A.R., 1994 Layer charge determination by alkylammonium ions Layer Charge Characteristics of 2:1 Silicate Clay Minerals Boulder, Colorado, USA The Clay Minerals Society 146.Google Scholar
Lagaly, G., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Colloid clay science Handbook of Clay Science Amsterdam Elsevier 141245 10.1016/S1572-4352(05)01005-6.CrossRefGoogle Scholar
Lagaly, G. and Weiss, A., 1970 Anordnung und Orientierung kationischer Tenside auf ebenen Silicatoberflächen Teil I Kolloid-Zeitschrift und Zeitschrift für Polymere 237 266272 10.1007/BF02086849.CrossRefGoogle Scholar
Lagaly, G. and Weiss, A., 1970 Anordnung und Orientierung kationischer Tenside auf ebenen Silicatoberflächen Teil II Kolloid-Zeitschrift und Zeitschrift für Polymere 237 364368 10.1007/BF02086849.CrossRefGoogle Scholar
Lagaly, G. and Weiss, A. (1970c) Anordnung und Orientierung kationischer Tenside auf ebenen Silicatoberflächen Teil III. Kolloid-Zeitschrift und Zeitschrift für Polymere, 238.CrossRefGoogle Scholar
Lagaly, G. and Weiss, A., 1971 Anordnung und Orientierung kationischer Tenside auf ebenen Silicatoberflächen Teil IV Kolloid-Zeitschrift und Zeitschrift für Polymere 243 4855 10.1007/BF01500614.CrossRefGoogle Scholar
Laird, D.A. Scott, A.D. and Fenton, T.E., 1989 Evaluation of the alkylammonium method of determining layer charge Clays and Clay Minerals 37 4146 10.1346/CCMN.1989.0370105.CrossRefGoogle Scholar
MacEwan, D.M.C. Ruiz Amil, A. Brown, G. and Brown, G., 1961 Interstratified clay minerals The X-ray Identification and Crystal Structures of Clay Minerals London Mineralogical Society 393445.Google Scholar
Mackenzie, R.C., 1959 The classification and nomenclature of clay minerals Clay Minerals Bulletin 4 5266 10.1180/claymin.1959.004.21.05.CrossRefGoogle Scholar
Mackenzie, R.C. and Bishui, B.M., 1958 The montmorillonite differential thermal curve. II. Effect of exchangable cations on the dehydroxylation of normal montmorillonite Clay Minerals Bulletin 20 276286 10.1180/claymin.1958.003.20.02.CrossRefGoogle Scholar
Maes, A. Stuhl, M.S. and Cremers, A., 1979 Layer charge-cation exchange capacity relationships in montmorillonite Clay and Clay Minerals 27 387392 10.1346/CCMN.1979.0270510.CrossRefGoogle Scholar
Malfoy, C. Pantet, A. Monnet, P. and Righi, D., 2003 Effects of the nature of the exchangeable cation and clay concentration on the rheological properties of smectite suspensions Clays and Clay Minerals 51 656663 10.1346/CCMN.2003.0510608.CrossRefGoogle Scholar
Martin, R.T. Bailey, S.W. Eberl, D.D. Fanning, D.S. Guggenheim, S. Kodama, H. Pevear, D.R. Środoń, J. and Wicks, F.J., 1991 Report of the Clay Minerals Society nomenclature committee: Revised classification of clay materials Clays and Clay Minerals 39 333335 10.1346/CCMN.1991.0390315.CrossRefGoogle Scholar
Mehra, O.P. Jackson, M.L. and Swineford, A., 1960 Iron oxide removal from soils and clays by a dithionite-citrate-system buffered with sodium bicarbonate 7th National conference on Clays and Clay Minerals Washington Pergamon Press 317327.Google Scholar
Moore, D.M. and Reynolds, R.C. Jr., 1997 X-ray diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press.Google Scholar
Nickel, E.H. and Grice, J.D., 1998 The IMA Commission on new minerals and mineral names: Procedures and guidelines on nomenclature The Canadian Mineralogist 36 316.Google Scholar
Olis, A.C. Malla, P.B. and Douglas, L.A., 1990 The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion Clay Minerals 25 3950 10.1180/claymin.1990.025.1.05.CrossRefGoogle Scholar
Plötze, M. and Kahr, G., 2005 Diagnostic intercalation in clay minerals Berichte der Deutschen Ton- und Tonmineralgruppe 11 5155.Google Scholar
Rieder, M. Cavazzini, G. D’Yakanov, Y. Frank-Kamenetskii, V.A. Gottardi, G. Guggenheim, S. Koval, P.V. Müller, G. Neiva, A.M.R. Radoslovich, E.W. Robert, J.-L. Sassi, F.P. Takeda, H. Weiss, Z. and Wones, D.R., 1998 Nomenclature of micas The Canadian Mineralogist 36 4148.Google Scholar
Ross, C.S. and Hendricks, S.B. (1945) Minerals of the Montmorillonite Group. United States Geological Survey Professional Paper, No. 205-B, 79 pp.Google Scholar
Sainz-Diaz, C.I. Palin, E.J. Hernández-Laguna, A. and Dove, M.T., 2004 Effect of the tetrahedral charge on the order-disorder of the cation distribution in the octahedral sheet of smectites and illites by computional methods Clays and Clay Minerals 52 357374 10.1346/CCMN.2004.0520311.CrossRefGoogle Scholar
Schultz, L.G., 1969 Lithium and potassium absorption, dehydroxylation temperature and structural water content of aluminous smectites Clays and Clay Minerals 17 115149 10.1346/CCMN.1969.0170302.CrossRefGoogle Scholar
Smith, D.K. Roberts, A.C. Bayliss, P. and Liebau, F., 1998 A systematic approach to general and structure-type formulas for minerals and other inorganic phases American Mineralogist 83 126132 10.2138/am-1998-1-212.CrossRefGoogle Scholar
Steudel, A., Batenburg, L., Fischer, H., and Emmerich, K. Structural modifications of several clay minerals during acid treatment. Euroclay’ 07, Aveiro, Portugal.Google Scholar
Stevens, R.E., 1945 A system for calculating analyses of micas and related minerals to end members U.S. Geological Survey Bulletin 950 101119.Google Scholar
Tributh, H. and Lagaly, G.A., 1986 Aufbereitung und Identifizierung von Boden- und Lagerstättentonen. I. Aufbereitung der Proben im Labor GIT Fachzeitschrift für das Laboratorium 30 524529.Google Scholar
Tsipursky, S.I. and Drits, V.A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique texture electron diffraction Clay Minerals 19 177192 10.1180/claymin.1984.019.2.05.CrossRefGoogle Scholar
Ufer, K. Roth, G. Kleeberg, R. Stanjek, H. Dohrmann, R. and Bergmann, J., 2004 Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach Zeitschrift für Kristallographie 219 519527.CrossRefGoogle Scholar
Ufer, K. Stanjek, H. Roth, G. Dohrmann, R. Kleeberg, R. and Kaufhold, S., 2008 Quantitative phase analysis of bentonites by the Rietveld method Clays and Clay Minerals 56 272282 10.1346/CCMN.2008.0560210.CrossRefGoogle Scholar
van Olphen, H., 1963 An Introduction to Clay Colloid Chemistry New York Interscience Publisher.Google Scholar
Vogt, K. and Köster, H.M., 1978 Zur Mineralogie, Kristallchemie und Geochemie einiger Montmorillonite aus Bentoniten Clay Minerals 13 2543 10.1180/claymin.1978.013.1.03.CrossRefGoogle Scholar
Wagner, F.E. and Wagner, U., 2004 Mössbauer Spectra of Clays and Ceramics The Netherlands Kluwer Academic Publishers 10.1023/B:HYPE.0000032113.42496.f2.CrossRefGoogle Scholar
Walker, G.F., 1958 Reactions of expanding lattice minerals with glycerol and ethylene glycol Clay Minerals Bulletin 3 302313 10.1180/claymin.1958.003.20.05.CrossRefGoogle Scholar
Warshaw, C.M. and Roy, R., 1961 Classification and a scheme for the identification of layer silicates Geological Society of American Bulletin 72 14551492 10.1130/0016-7606(1961)72[1455:CAASFT]2.0.CO;2.CrossRefGoogle Scholar
Wiewióra, A., 1990 Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition. I. The mica group Clay Minerals 25 2381.Google Scholar
Wiewióra, A. (2000) Crystallochemical classifications of smectites and the unified system of projection of their chemical composition, Attention to Fe3+-montmorillonite. Proceedings of the 1stLatin American Clay Conference, Funchal 2000, Volume 1 -Invited lectures, pp. 237244.Google Scholar
Wolters, F., 2005 Classification of montmorillonites Germany Universität Karlsruhe 98 pp.Google Scholar
Wolters, F. and Emmerich, K., 2007 Thermal reactions of smectites — relation of dehydroxylation temperature to octahedral structure Thermochimica Acta 462 8088 10.1016/j.tca.2007.06.002.CrossRefGoogle Scholar
Wolters, F. Lagaly, G. Kahr, G. Nuesch, R. and Emmerich, K., 2009 A comprehensive characterisation of dioctahedral smectites Clays and Clay Minerals 57 115133 10.1346/CCMN.2009.0570111.CrossRefGoogle Scholar
Zvyagin, B.B., 2001 Current problems with the nomenclature of phyllosilicates Clays and Clay Minerals 49 492499 10.1346/CCMN.2001.0490602.CrossRefGoogle Scholar