Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T08:30:44.342Z Has data issue: false hasContentIssue false

Clay minerals in the Meuse-Haute Marne underground laboratory (France): Possible influence of organic matter on clay mineral evolution

Published online by Cambridge University Press:  01 January 2024

Francis Claret*
Affiliation:
Environmental Geochemistry Group, LGIT - Maison des Géosciences, University J. Fourier - CNRS, BP 53, 38041 Grenoble cedex 9, France ANDRA, Parc de Croix Blanche, 1–7 rue Jean Monnet, 92298 Châtenay-Malabry cedex, France
Boris A. Sakharov
Affiliation:
Geological Institute, Russian Academy of Sciences, 7 Pyzhevsky street, Moscow 119017, Russia
Victor A. Drits
Affiliation:
Geological Institute, Russian Academy of Sciences, 7 Pyzhevsky street, Moscow 119017, Russia
Bruce Velde
Affiliation:
Laboratoire de Géologie, Ecole Normale Supérieure - CNRS, 24 rue Lhomond, 75231 Paris cedex 5, France
Alain Meunier
Affiliation:
Laboratoire HYDRASA, University of Poitiers - CNRS, 40 avenue du Recteur Pineau, 86022 Poitiers cedex, France
Lise Griffault
Affiliation:
ANDRA, Parc de Croix Blanche, 1–7 rue Jean Monnet, 92298 Châtenay-Malabry cedex, France
Bruno Lanson
Affiliation:
Environmental Geochemistry Group, LGIT - Maison des Géosciences, University J. Fourier - CNRS, BP 53, 38041 Grenoble cedex 9, France
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A clay-rich Callovo-Oxfordian sedimentary formation was selected in the eastern Paris Basin (MHM site) to host an underground laboratory dedicated to the assessment of nuclear waste-disposal feasibility in deep geological formations. As described initially, this formation shows a mineralogical transition from an illite-smectite (I–S) mixed-layered mineral (MLM), which is essentially smectitic and randomly interstratified (R = 0) in the top part of the series to a more illitic, ordered (R ⩾ 1) I–S in its deeper part.

This description has been challenged by using the multi-specimen method developed by Drits et al. (1997a) and Sakharov et al. (1999). It is shown that all samples contain a physical mixture of an unusually (?) illitic (∼65% I) randomly interstratified I-Exp (illite-expandable MLM) and of a discrete smectite, in addition to discrete illite, kaolinite and chlorite. Structural parameters of the different clay phases vary little throughout the series. According to the proposed model, the mineralogical transition corresponds to the disappearance of smectite with increasing burial depth.

Comparison with clay minerals from formations of similar age (Oxfordian-Toarcian) throughout the Paris Basin shows that the clay mineralogy in the deeper part of the series originates from a smectite-to-illite transition resulting from a low-temperature burial diagenesis. The anomalous lack of evolution of clay minerals in the upper part of the series is thought to be related to specific interactions between organic matter and clay minerals.

Type
Research Article
Copyright
Copyright © 2004, The Clay Minerals Society

References

Bauer, A. and Velde, B., (1999) Smectite transformation in high molar KOH solutions Clay Minerals 34 259273 10.1180/000985599546226.Google Scholar
Beaufort, D. Berger, G. Lacharpagne, J.C. and Meunier, A., (2001) An experimental alteration of montmorillonite to a di+trioctahedral smectite assemblage at 100 and 200°C Clay Minerals 36 211225 10.1180/000985501750177942.Google Scholar
Bethke, C.G. Vergo, N. and Altaner, S.P., (1986) Pathways of smectite illitization Clays and Clay Minerals 34 125135 10.1346/CCMN.1986.0340203.Google Scholar
Boles, J.R. and Francks, G.S., (1979) Clay diagenesis in Wilcox sandstones of Southwest Texas: Implications of smectite diagenesis on sandstone cementation Journal of Sedimentary Petrology 49 5570.Google Scholar
Bouchet, A. and Rassineux, F., (1997) Echantillons d’argiles du forage EST 104: Etude minéralogique approfondie France Chatenay Malabry 107 pp.Google Scholar
Burst, J.F., (1969) Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum migration American Association of Petroleum Geologists Bulletin 53 7393.Google Scholar
Calarge, L. Lanson, B. Meunier, A. and Formoso, M.L., (2003) The smectitic minerals in a bentonite deposit from Melo (Uruguay) Clay Minerals 38 2534 10.1180/0009855033810075.Google Scholar
Cathelineau, M. Ayt Ougougdal, M. Elie, M. and Ruck, R., (1997) Mise en evidence d’une diagénèse de basse température dans les series mésozoiques du site Est: une étude des inclusions fluides des argiles et de la matière organique Proceeding of the Journées scientifiques Bar le duc ANDRA, CNRS 28.Google Scholar
Claret, F., (2001) Caractérisation structurale des transitions minéralogiques dans les formations argileuses: Contrôles et implications géochimiques des processus d’illitisation Cas particulier d’une perturbation alcaline dans le Callovo-Oxfordien Laboratoire souterrain Meuse-Haute-Marne Grenoble, France Université Joseph Fourier 174 pp.Google Scholar
Claret, F. Bauer, A. Schäfer, T. Griffault, L. and Lanson, B., (2002) Experimental investigation of the interaction of clays with high pH solutions: A case study from the Callovo-Oxfordian formation, Meuse-Haute Marne underground laboratory (France) Clays and Clays Minerals 50 633646 10.1346/000986002320679369.Google Scholar
de Marsily, G. Goncalves, J. Violette, S. and Castro, M.C., (2002) Migration mechanisms of radionuclides from a clay repository toward adjacent aquifers and the surface Comptes Rendus Physique 3 945959 10.1016/S1631-0705(02)01385-3.Google Scholar
Drits, V.A. and Tchoubar, C., (1990) X-ray Diffraction by Disordered Lamellar Structures: Theory and Applications to Microdivided Silicates and Carbons Berlin Springer-Verlag 10.1007/978-3-642-74802-8 371 pp.Google Scholar
Drits, V.A. Lindgreen, H. Sakharov, B.A. and Salyn, A.S., (1997) Sequence structure transformation of illite-smectite-vermiculite during diagenesis of Upper Jurassic shales, North Sea Clay Minerals 32 351371 10.1180/claymin.1997.032.3.03.Google Scholar
Drits, V.A. Środoń, J. and Eberl, D.D., (1997) XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation Clays and Clays Minerals 45 461475 10.1346/CCMN.1997.0450315.Google Scholar
Drits, V.A. Lindgreen, H. Sakharov, B.A. Jakobsen, H.J. Salyn, A.L. and Dainyak, L.G., (2002) Tobelitization of smectite during oil generation in oil-source shales. Application to north sea illite-tobellite-smectite-vermiculite Clays and Clays Minerals 50 8298 10.1346/000986002761002702.Google Scholar
Elie, M. Faure, P. Michels, R. Landais, P. and Griffault, L., (2000) Natural and laboratory oxidation of low-organiccarbon-content sediments: comparison of chemical changes in hydrocarbons Energy and Fuels 14 854861 10.1021/ef9902146.Google Scholar
Espitalié, J. Marquis, F. Sage, L. and Barsony, I., (1987) Géochimie organique du Bassin de Paris Revue de l’Institut Français du Pétrole 42 271302 10.2516/ogst:1987017.Google Scholar
Howard, S.A. Preston, K.D., Bish, D.L. and Post, J.E., (1989) Profile fitting of powder diffraction patterns Modern Powder Diffraction Washington, D.C Mineralogical Society of America 217275 10.1515/9781501509018-011.Google Scholar
Hower, J. and Mowatt, T.C., (1966) The mineralogy of illites and mixed-layer illite/montmorillonites American Mineralogist 51 825854.Google Scholar
Hower, J. Eslinger, E.V. Hower, M.E. and Perry, E.A., (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence Geological Society of America Bulletin 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.Google Scholar
Huang, W.L. Longo, J.M. and Pevear, D.R., (1993) An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer Clays and Clay Minerals 41 162177 10.1346/CCMN.1993.0410205.Google Scholar
Inoue, A. Bouchet, A. Velde, B. and Meunier, A., (1989) Convenient technique for estimating smectite layer percentage in randomly interstratified illite/smectite minerals Clays and Clay Minerals 37 227234 10.1346/CCMN.1989.0370305.Google Scholar
Landais, P. and Elie, M., (1999) Utilisation de la géochimie organique pour la détermination du paléoenvironnement et de la paléothermicité dans le Callovo-Oxfordien du site de l’Est de la france. Etude de l’Est du bassin de Paris France Edition EDP Sciences, Les Ulis 3561.Google Scholar
Lanson, B., (1990) Mise en évidence des mécanismes de transformation des interstratifies illite/smectite au cours de la diagenèse France Université Paris 6 — Jussieu PhD thesis.Google Scholar
Lanson, B. and Besson, G., (1992) Characterization of the end of smectite-to-illite transformation: Decomposition of X-ray patterns Clays and Clay Minerals 40 4052 10.1346/CCMN.1992.0400106.Google Scholar
Lanson, B. and Champion, D., (1991) The I/S-to-illite reaction in the late stage diagenesis American Journal of Science 291 473506 10.2475/ajs.291.5.473.Google Scholar
Lindgreen, H. Drits, V.A. Sakharov, B.A. Salyn, A.L. Wrang, P. and Dainyak, L., (2000) Illite-smectite structural changes during metamorphism in black Cambrian Alum shales from the Baltic area American Mineralogist 85 12231238 10.2138/am-2000-8-916.Google Scholar
Meunier, A. and Velde, B., (1989) Solid solutions in I/S mixed-layer minerals and illite American Mineralogist 74 11061112.Google Scholar
Meunier, A. and Velde, B., (2004) Illite. Origins, Evolution and Metamorphism Berlin Springer-Verlag.Google Scholar
Meunier, A. Lanson, B. and Beaufort, D., (2000) Vermiculitization of smectite interfaces and illite layer growth as a possible dual model for illite-smectite illitization in diagenetic environments: a synthesis Clay Minerals 35 573586 10.1180/000985500546891.Google Scholar
Meunier, A. Lanson, B. and Velde, B., (2004) Composition variation of illite-vermiculitesmectite mixed-layer minerals in a bentonite bed from Charente (France) Clay Minerals 39 03 317332 10.1180/0009855043930137.Google Scholar
Moore, D.M. and Reynolds, R.C. Jr., (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford, UK, and New York Oxford University Press 322 pp.Google Scholar
Pellenard, P. Deconinck, J.F. Marchand, D. Thierry, J. Fortwengler, D. and Vigneron, G., (1999) Eustatic and volcanic influence during Middle Callovian Oxfordian clay sedimentation in the eastern part of the Paris Basin Compte Rendus de l’academie des Sciences 328 807813.Google Scholar
Perry, E.A. Jr. and Hower, J., (1970) Burial diagenesis in Gulf Coast pelitic sediments Clays and Clay Minerals 18 165177 10.1346/CCMN.1970.0180306.Google Scholar
Pytte, A.M. Reynolds, R.C., Naesser, N.D. and McCulloh, T.H., (1989) The thermal transformation of smectite to illite The Thermal History of Sedimentary Basins: Methods and Case History New York Springer-Verlag 133140 10.1007/978-1-4612-3492-0_8.Google Scholar
Righi, D. Velde, B. and Meunier, A., (1995) Clay stability in clay-saturated soil systems Clay Minerals 30 4554 10.1180/claymin.1995.030.1.05.Google Scholar
Rousset, D. and Clauer, N., (2003) Discrete clay diagenesis in a very low-permeable sequence constrained by an isotopic (K-Ar and Rb-Sr) study Contributions to Mineralogy and Petrology 145 182198 10.1007/s00410-003-0441-6.Google Scholar
Sakharov, B.A. Lindgreen, H. Salyn, A. and Drits, V., (1999) Determination of illite-smectite structures using multispecimen XRD profile fitting Clays and Clays Minerals 47 555566 10.1346/CCMN.1999.0470502.Google Scholar
Sato, T. Murakami, T. and Watanabe, T., (1996) Change in layer charge of smectites and smectite layers in illite/smectite during diagenetic alteration Clays and Clay Minerals 44 460469 10.1346/CCMN.1996.0440403.Google Scholar
Shutov, V.D. Drits, V.A. Sakharov, B.A. and Heller, L., (1969) On the mechanism of a postsedimentary transformation of montmorillonite into hydromica Proceedings of the International Clay Conference, Tokyo Jerusalem Israel University Press 523531.Google Scholar
Środoń, J. (1978) Correlation between coal and clay diagenesis in the Carboniferous of the upper Silesian coal basin. Proceedings of the International Clay Conference, Oxford, pp. 251260.Google Scholar
Środoń, J., (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction Clays and Clay Minerals 28 401411 10.1346/CCMN.1980.0280601.Google Scholar
Środoń, J., (1981) X-ray identification of randomly interstratified illite-smectite in mixtures with discrete illite Clay Minerals 16 297304 10.1180/claymin.1981.016.3.07.Google Scholar
Środoń, J., (1984) Mixed-layer illite-smectite in low-temperature diagenesis: Data from the Miocene of the Carpathian foredeep Clay Minerals 19 205215 10.1180/claymin.1984.019.2.07.Google Scholar
Środoń, J. Eberl, D.D. and Bailey, S.W., (1984) Illite Micas Washington, D.C Mineralogical Society of America 495544 10.1515/9781501508820-016.Google Scholar
Środoń, J. Elsass, F. McHardy, W.J. and Morgan, D.J., (1992) Chemistry of illite-smectite inferred from TEM measurements of fundamental particles Clay Minerals 27 137158 10.1180/claymin.1992.027.2.01.Google Scholar
Velde, B. and Espitalié, J., (1989) Comparison of kerogen maturation and illite/smectite composition in diagenesis Journal of Petroleum Geology 12 103110 10.1111/j.1747-5457.1989.tb00223.x.Google Scholar
Velde, B. and Peck, T., (2002) Clay mineral changes in the Morrow experimental plots, University of Illinois Clays and Clay Minerals 50 364370 10.1346/000986002760833738.Google Scholar
Velde, B. and Vasseur, G., (1992) Estimation of the diagenetic smectite to illite transformation in time-temperature space American Mineralogist 77 967976.Google Scholar
Velde, B. Suzuki, T. and Nicot, E., (1986) Pressure-Temperature-Composition of illite/smectite mixed-layer minerals: Niger delta mudstones and other examples Clays and Clay Minerals 34 435441 10.1346/CCMN.1986.0340410.Google Scholar
Watanabe, Takashi, (1981) Identification of illite/montmorillonite interstratifications by X-ray powder diffraction Journal of the Mineralogical Society of Japan 15 Special 3241 10.2465/gkk1952.15.Special_32.Google Scholar
Watanabe, T., (1988) The structural model of illite/smectite interstratified mineral and the diagram for their identification Clay Science 7 97114.Google Scholar
Whitney, G., (1990) Role of water in the smectite-to-illite reaction Clays and Clay Minerals 38 343350 10.1346/CCMN.1990.0380402.Google Scholar
Whitney, G., (1992) Dioctahedral smectite reactions at elevated temperatures: Effects of K-availability, Na/K ratio and ionic strength Applied Clay Science 7 97112 10.1016/0169-1317(92)90032-I.Google Scholar