Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T14:46:42.088Z Has data issue: false hasContentIssue false

Clay Minerals in Basalt-Hawaiite Rocks From Mururoa Atoll (French Polynesia). II. Petrography and Geochemistry

Published online by Cambridge University Press:  01 January 2024

Alain Meunier*
Affiliation:
University of Poitiers, HydrASA INSU-CNRS, 40 avenue Recteur Pineau, 86022 Poitiers Cedex, France
Antoine Mas
Affiliation:
University of Poitiers, HydrASA INSU-CNRS, 40 avenue Recteur Pineau, 86022 Poitiers Cedex, France
Daniel Beaufort
Affiliation:
University of Poitiers, HydrASA INSU-CNRS, 40 avenue Recteur Pineau, 86022 Poitiers Cedex, France
Patricia Patrier
Affiliation:
University of Poitiers, HydrASA INSU-CNRS, 40 avenue Recteur Pineau, 86022 Poitiers Cedex, France
Patrick Dudoignon
Affiliation:
University of Poitiers, HydrASA INSU-CNRS, 40 avenue Recteur Pineau, 86022 Poitiers Cedex, France
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The clay minerals formed in chilled margins and massive crystallized inner parts of three basalt-hawaiite bodies of Mururoa Atoll (French Polynesia) exhibit contrasting textures. Glass alteration textures are observed around fractures crosscutting the quenched margins: Fe-rich clays grow inward into the glass (retreating surface) while Mg-rich clays grow outward (open space). The textures of clay deposits filling the diktytaxitic voids (mesostasis) in the massive inner parts of the three volcanic bodies are different: unoriented clay matrix with embedded euhedral apatite and pyroxene microcrysts (submarine flow); pallisadic clays coating the void walls and the crystal surfaces of apatite and K-feldspar microcrysts (subaerial flow); and clay muffs covering all the apatite needles, with the central part of the void remaining empty (dike). The unoriented texture could result from the alteration of a glass precursor concomitant with the olivine phenocrysts (clay pseudomorphs). However, such an alteration implies important chemical transfers which are not observed. The pallisadic and muff textures form through heterogeneous nucleation on the solid surfaces and crystal growth from a saline solution. No glass precursor existed. As the center of the diktytaxitic voids in the dike is empty, the residual liquid was probably boiling. The amounts of light rare earth elements (LREE), Sr, and the most incompatible elements are greater in clays from diktytaxitic voids relative to the amounts formed in the altered glass of the chilled margins. Thus, diktytaxitic clays formed from a residual liquid which gave either an evolved glass or a saline solution after cooling (fractionation process). The δ18O variation vs. loss on ignition (LOI) indicates that sea water was involved either in rock alteration or magma contamination. This is confirmed by the 87Rb/86Sr ratio of bulk rocks and clay fractions from the quenched and massive inner parts of the three volcanic bodies which do not fit with the 11.5 Ma isochron indicating that the Rb-Sr system was not closed at any stage during the magmatic history.

Type
Article
Copyright
Copyright © 2008, The Clay Minerals Society

References

Alt, J.C., Frey, M. Robinson, D., 1999 Very low-grade hydrothermal metamorphism of basic igneous rocks Low-grade Metamorphism Oxford, UK Blackwell Science Ltd 169201.Google Scholar
Anderson, AT Jr. Swihar, G.H. Artiol, G. and Geiger, C.A., 1984 Segregation vesicles, gas filter-pressing, and igneous differentiation Journal of Geology 92 5572 10.1086/628834.CrossRefGoogle Scholar
Andrews, A.J., 1980 Saponite and celadonite in layer 2 basalts, DSDP Leg 37 Contributions to Mineralogy and Petrology 73 323340 10.1007/BF00376627.CrossRefGoogle Scholar
Banfield, J.F. and Barker, W.W., 1998 Low-temperature alteration in tuffs from Yucca mountain, Nevada Clays and Clay Minerals 46 2737 10.1346/CCMN.1998.0460104.CrossRefGoogle Scholar
Bates, R.L. and Jackson, J.A., 1987 Glossary of Geology Virginia, USA American Geological Institute 787 pp.Google Scholar
Billault, V. Beaufort, D. Baronnet, A. and Lacharpagne, J.C., 2003 A nanopetrographic and textural study of grain-coating chlorites in sandstone reservoirs Clay Minerals 38 317330 10.1180/0009855033830098.CrossRefGoogle Scholar
Bonorino, F.G., 1959 Hydrothermal alteration in the front range mineral belt, Colorado Geological Society of America Bulletin 70 5390 10.1130/0016-7606(1959)70[53:HAITFR]2.0.CO;2.CrossRefGoogle Scholar
Brilha, J. (1997) Cinétique de cristallisation et d’alterations post-magmatiques d’une cheminée basaltique du complexe volcanique de Lisbonne. Modélisation du refroidissement et du mécanisme de fracturation en profondeur. PhD thesis Cotutelle, Universities of Poitiers (France) and Braga (Portugal), 177 pp.Google Scholar
Buatier, M., 1989 Genèse et évolution des argiles vertes hydrothermales océaniques. Les ‘Monts’ du rift des Galapagos (Pacifique Equatorial) France University of Strasbourg 175 pp.Google Scholar
Burnham, C.W. and Yoder, HS Jr., 1979 The importance of volatile constituents The Evolution of Igneous Rocks, Fiftieth Anniversary Perspectives New Jersey Princeton University Press 439482.Google Scholar
Chevrier, V. Poulet, F. and Bibring, J.P., 2007 Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates Nature 448 6063 10.1038/nature05961.CrossRefGoogle Scholar
Decarreau, A. Petit, S. Vieillard, P. and Dabert, N., 2004 Hydrothermal synthesis of aegirine at 200°C European Journal of Mineralogy 16 8590 10.1127/0935-1221/2004/0016-0085.CrossRefGoogle Scholar
DeGraff, J.M. and Aydin, A., 1993 Effect of thermal regime on growth increment and spacing of contraction joints in basaltic lava Journal of Geophysical Research 98 64116430 10.1029/92JB01709.CrossRefGoogle Scholar
DePaolo, D.J., 1986 Detailed record of the Neogene Sr isotopic evolution of seawaterfrom DSDP Site 590B Geology 14 103106 10.1130/0091-7613(1986)14<103:DROTNS>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Destrigneville, C. Schott, J. Caristan, Y. and Agrinier, P., 1991 Evidence of an early alteration process driven by magmatic fluids in Mururoa volcano Earth and Planetary Science Letters 104 119139 10.1016/0012-821X(91)90199-R.CrossRefGoogle Scholar
Drief, A. and Schiffman, P., 2004 Very low temperature alteration of sideromelane in hyaloclastites and hyalotuffs from Kilauea and Mauna Kea volcanoes: implications for the mechanism of palagonite formation Clays and Clay Minerals 52 622634 10.1346/CCMN.2004.0520508.Google Scholar
Dudoignon, P. Meunier, A. Beaufort, D. Gachon, A. and Buigues, D., 1989 Hydrothermal alteration at Mururoa Atoll (French Polynesia) Chemical Geology 76 385401 10.1016/0009-2541(89)90106-X.CrossRefGoogle Scholar
Dudoignon, P. Proust, D. and Gachon, A., 1997 Hydrothermal alteration associated with rift zones at Fangatauffa atoll (French Polynesia) Bulletin of Volcanology 58 583596 10.1007/s004450050164.CrossRefGoogle Scholar
Eggleton, R.A. and Keller, J., 1982 The palagonitization of limburgite glass — A TEM study Neues Jahrbuch für Mineralogie Monatshefte H7 321336.Google Scholar
Frezzotti, M.L., 2001 Silicate-melt inclusions in magmatic rocks: application to petrology Lithos 55 273299 10.1016/S0024-4937(00)00048-7.CrossRefGoogle Scholar
Goff, F., 1996 Vesicle cylinders in vapour-differentiated basalt flows Journal of Volcanology and Geothermal Research 71 167185 10.1016/0377-0273(95)00073-9.CrossRefGoogle Scholar
Greenough, J.D. Lee, C.Y. and Fryer, B.J., 1999 Evidence for volatile-influenced differentiation in a layered alkali basalt flow, Penghu Islands, Taiwan Bulletin of Volcanology 60 412424 10.1007/s004450050241.Google Scholar
Grigor’ev, D.P., 1965 Ontology of Minerals S. Marson, Jerusalem Israel program for scientific transactions Ltd 250 pp.Google Scholar
Guille, G. Goutiere, G. and Sornein, J.F., 1993 Les atolls de Mururoa et Fangataufa (Polynésie Française). 1 — géologie, pétrologie, hydrogéologie (édification et évolution des edifices) Paris Masson.Google Scholar
Jaeger, J.C., 1968 Cooling and solidification of igneous rocks Basalts: the Poldervaart Treatise on Rocks of Basaltic Composition 2 503536.Google Scholar
Kent, A.J.R. Clague, D.A. Hunda, M. Stolper, E.M. Hutcheon, I.D. and Norman, M.D., 1999 Widespread assimilation of a seawater-derived component at Loihi Seamount, Hawaii Geochimica et Cosmochimica Acta 63 27492761 10.1016/S0016-7037(99)00215-X.CrossRefGoogle Scholar
Kloprogge, J.T. Komarneni, S. and Amonette, J.E., 1999 Synthesis of smectite clay minerals: a critical review Clays and Clay Minerals 47 529554 10.1346/CCMN.1999.0470501.CrossRefGoogle Scholar
Kontak, D.J. De Wolfe deYoung, M.Y. and Dostal, J., 2002 Late-stage crystallization history of the Jurassic North Mountain basalt, Nova Scotia, Canada. I. Textural and chemical evidence for pervasive development of silica-liquid immiscibility The Canadian Mineralogist 40 12871311 10.2113/gscanmin.40.5.1287.CrossRefGoogle Scholar
Lofgren, G., 1971 Experimentally produced devitrification textures in natural rhyolitic glass Geological Society of America Bulletin 82 111124 10.1130/0016-7606(1971)82[111:EPDTIN]2.0.CO;2.CrossRefGoogle Scholar
Lofgren, G., 1971 Spherulitic textures in glassy and crystalline rocks Journal of Geophysical Research 76 56355648 10.1029/JB076i023p05635.CrossRefGoogle Scholar
Mas, A. Meunier, A. Beaufort, D. Patrier, P. and Dudoignon, P., 2008 Clay minerals in basalt-hawaiite rocks from Mururoa atoll (French Polynesia). I. Mineralogy Clays and Clay Minerals 56 711729 10.1346/CCMN.2008.0560611.CrossRefGoogle Scholar
Maury, R.C. Caroff, M. Achard, S. Guille, G. Joron, J.L. Gachon, A. Rocaboy, A. and Leterrier, J., 1992 L’atoll de Mururoa (Polynésie Française). La série magmatique Bulletin de la Sociéte Géologique de France 163 659679.Google Scholar
McPhie, J., Doyle, M., and Allen, R. (1993) Volcanic textures, a guide to the interpretation of the textures in volcanic rocks. Pp. 2171 in: CODES Key Centre, University of Tasmania.Google Scholar
Meunier, A. and Mascle, A., 1994 Mechanism of fluid palaeocirculations in fractured rocks determined by vein alteration studies Hydrocarbon and Petroleum Geology of France Berlin Springer-Verlag 365378 10.1007/978-3-642-78849-9_26.CrossRefGoogle Scholar
Pichler, T. Ridley, W.I. and Nelson, E.P., 1999 Low-temperature alteration of dredged volcanics from the Southern Chile ridge: additional information about early stages of seafloor weathering Marine Geology 159 272285 10.1016/S0025-3227(99)00008-0.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F., 1984 A new model for quantitative analysis. I. Application to the analysis of homogeneous samples La Recherche Aerospatiale 3 1338.Google Scholar
Poulet, F. Bibring, J.P. Mustard, J.F. Gendrin, A. Mangold, N. Langevin, Y. Arvidson, R.E. Gondet, B. and Gomez, C. the Omega Team, 2005 Phyllosilicates on Mars and implications for early Martian climate Nature 438 623627 10.1038/nature04274.CrossRefGoogle ScholarPubMed
Reed, S.J.B., 1993 Electron Probe Microanalysis 2 Cambridge, UK Cambridge University Press.Google Scholar
Roedder, E., 1979 Origin and significance of magmatic inclusions Bulletin de Minéralogie 102 487510.CrossRefGoogle Scholar
Ryan, M.P. and Sammis, C.G., 1981 The glass transition in basalt Journal of Geophysical Research 86B10 95199535 10.1029/JB086iB10p09519.CrossRefGoogle Scholar
Savin, S.M. Lee, M. and Bailey, S.W., 1988 Isotopic studies of phyllosilicates Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C Mineralogical Society of America 189223 10.1515/9781501508998-012.CrossRefGoogle Scholar
Schiffman, P. Day, H.W., Frey, M. Robinson, D., 1999 Petrological methods for the study of very low-grade metabasites Low-grade Metamorphism Oxford Blackwell Scientific Ltd 108142.Google Scholar
Staudigel, H. and Hart, S.R., 1983 Alteration of basaltic glass: Mechanism and significance of the oceanic crust-sea water budget Geochimica et Cosmochimica Acta 47 337350 10.1016/0016-7037(83)90257-0.CrossRefGoogle Scholar
Sun, S.S. McDonough, W.F., Sanders, A.D. Norry, M.J., 1989 Chemical and isotopic systematics of oceanic basalts: implications formantle composition and processes Magmatism in the Ocean Basins Oxford Blackwell Scientific Publishers 313345.Google Scholar
Taylor, HP Jr., 1968 The oxygen isotope geochemistry of igneous rocks Contributions to Mineralogy and Petrology 19 171 10.1007/BF00371729.CrossRefGoogle Scholar
Thorseth, I.H. Furnes, H. and Tumyr, O., 1991 A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanism of glass-palagonite transformation Geochemica et Cosmochimica Acta 55 731749 10.1016/0016-7037(91)90337-5.CrossRefGoogle Scholar
Trommsdorff, V. and Skuppen, G., 1986 Vapour loss (‘boiling’) as a mechanism for fluid evolution in metamorphic rocks Contributions to Mineralogy and Petrology 94 317322 10.1007/BF00371440.CrossRefGoogle Scholar
Veizer, J., 1989 Strontium isotopes in seawater through time Annual Reviewof Earth and Planetary Sciences 17 141167 10.1146/annurev.ea.17.050189.001041.CrossRefGoogle Scholar
Walker, G.P.L., 1989 Spongy pahoehoe in Hawaii: a study of vesicle distribution patterns in basalt and their significance Bulletin of Volcanology 51 199209 10.1007/BF01067956.CrossRefGoogle Scholar
Winter, J.D., 2001 An Introduction to Igneous and Metamorphic Petrology New Jersey Prentice Hall 699 pp.Google Scholar
Wise, W.S. and Eugster, H.P., 1964 Celadonite: synthesis, thermal stability and occurrence American Mineralogist 49 10311083.Google Scholar
Zhou, Z. and Fyfe, W.S., 1989 Palagonitization of basaltic glass from DSDP Site 335, Leg 37: Textures, chemical composition, and mechanism of formation American Mineralogist 74 10451053.Google Scholar