Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T06:57:13.409Z Has data issue: false hasContentIssue false

Clay Mineral Formation in an Alpine Environment

Published online by Cambridge University Press:  01 July 2024

Robert C. Reynolds Jr.*
Affiliation:
Earth Sciences Department, Dartmouth College, Hanover, N.H. 03755, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Vermiculite, mixed-layer vermiculite-phlogopite, and smectite are presently forming from igneous and metamorphic bedrock in the alpine zone of the northern Cascades, Washington. In addition, south-facing exposures of quartz-diorites and metadiorites above snow line are weathering to ferruginous bauxite. Calculations indicate that vermiculite is presently forming from phlogopite schists in this environment at a unit area rate that is approximately six times the average estimated rate of clay erosion for North America. The mineralogical data indicate that chemical weathering in this region is a quantitatively significant process, and suggest that in the development of current geomorphic concepts researchers may have generally underestimated the importance of chemical weathering in alpine environments.

Résumé

Résumé

De la vermiculite, un interstratifié vermiculite-phlogopite, et une smectite, se forment actuellement à partir de roches mère ignées et métamorphiques, dans la zone alpine des Northern Cascades, Washington. En plus, des quartz-diorites et des métadiorites situées au-dessus de la limite des neiges sur les versants face au Sud s’altèrent en bauxites ferrugineuses. Les calculs indiquent que la vermiculite est actuellement en formation à partir des schistes phlogopitiques de ce milieu, à une vitesse, par unité de surface, qui est approximativement six fois la vitesse moyenne estimée pour l’érosion de l’argile dans l’Amérique du Nord. Les données minéralogiques indiquent que l’altération chimique est, dans cette région, un processus quantitativement significatif, et suggèrent que dans le développement des concepts géomorphologiques courants, les chercheurs peuvent avoir généralement sous-estimé l’importance de l’altération chimique dans les milieux alpins.

Kurzreferat

Kurzreferat

Vermiculit, gemischt schichtiger Vermiculit-Phlogopit und Smectit werden gegenwärtig aus eruptivem und metamorphem Grundgestein in der alpinen Zone der nördlichen Cascades, Washington, gebildet. Darüber hinaus verwittern gegen den Süden weisende Quarz-Dioriten und Metadioriten oberhalb der Schneegrenze zu eisenschüssigem Bauxit. Berechnungen ergeben, dass sich Vermiculit gegenwärtig aus Phlogopitschiefern in diesem Milieur mit Einheitsflächengeschwindigkeit bildet, das ist etwa sechsmal der durchschnittlichen Schätzgeschwindigkeit der Tonerosion in Nordamerika. Die mineralogischen Messwerte deuten darauf hin, dass chemische Verwitterung in dieser Gegend ein quantitativ bedeutsamer Vorgang ist, und geben zu der Vermutung Anlass, dass bei der Entwicklung laufender geomorphischer Begriffe die Forschung möglicherweise die Bedeutung der chemischen Verwitterung in der alpinen Umgebung unterschätzt hat.

Резюме

Резюме

В альпийской зоне северной части Каскадов (шт. Вашингтон) происходит современное образование вермикулита, смешаннослойного вермикулит-флогопита и смектита по изверженным и метаморфическим породам. Кроме того обращенные к югу обнажения кварцевых диоритов и метадиоритов выше снеговой линии выветриваются с образованием железистого боксита. Проведенные вычисления показывают, что вермикулит в настоящее время образуется из флогопитовых сланцев со скоростью на единицу поверхности, которая примерно в 6 раз превышает среднюю скорость эрозии Северной Америки. Минералогические данные указывают, что химическое выветривание в этом регионе вызывает преобразование значительного количества материала и дает возможность предположить, что при развитии современных геоморфологических концепций исследователи, возможно, обычно недооценивают роль химического выветривания в условиях альпийского рельефа.

Type
Research Article
Copyright
Copyright © 1971, The Clay Minerals Society

References

Berner, R. A., (1971) Principles of Chemical Sedimentology New York McGraw-Hill.Google Scholar
Brindley, G. W., (1956) Allevardite, a swelling double-layer mica mineral Am. Mineralogist 41 91.Google Scholar
Claridge, G. C., (1965) The clay mineralogy and chemistry of some soils from the Ross Dependency, Antarctica N.Z.J. Geol. Geophys. 8 186.CrossRefGoogle Scholar
Curtis, C. D., (1970) Differences between lateritic and podzolic weathering Geochim. Cosmochim. Acta 34 1351.CrossRefGoogle Scholar
Czamanske, G. K., Hower, J. and Millard, R. C., (1966) Non-proportional, non-linear results from X-ray emission techniques involving moderate dilution rock fusion Geochim. Cosmochim. Acta 30 745.CrossRefGoogle Scholar
Deer, W. A., Howie, R. A. and Zussman, J. (1962) Rock-Forming Minerals, Vol. 3, Sheet Silicates. Longmans Green, London 270 pp.Google Scholar
Garrels, R. M. and Mackenzie, F. T., (1971) Evolution of Sedimentary Rocks .Google Scholar
Gibbs, R. J., (1970) Mechanisms controlling world water chemistry Science 170 1088.CrossRefGoogle ScholarPubMed
Goldschmidt, V. M., (1928) Om Dannelse av Laterit som Forvitringsprodukt av Norsk Labradorsten Saertrykk av Festskirift til H. Sorlie 21.Google Scholar
Gower, J. A., (1957) X-ray measurement of the iron-magnesium ratio in biotites Am. J. Sci. 255 142.CrossRefGoogle Scholar
Jackson, M. L., (1956) Soil Chemical Analysis—A dvanced Course .Google Scholar
Johnson, N. M., Reynolds, R. C. and Campbell, W., (1970) Rate of chemical weathering in a temperate glacial environment Abst., 1970 Ann. Meet. Geol. Soc. Am. .Google Scholar
Kinter, E. G. and Diamond, S., (1956) A new method for preparation and treatment of oriented-aggregate specimens of soil clays for X-ray diffraction analysis Soil Sci. 81 111.CrossRefGoogle Scholar
MacEwan, D. M. C., (1958) Fourier transform methods for studying scattering from lamellar systems—II, The calculation of X-ray diffraction effects for various types of interstratification Kolloid Z. 156 61.10.1007/BF01812363CrossRefGoogle Scholar
Mathieson, A. Mc L. and Walker, G. F., (1954) Structure of Mg—vermiculite Am. Mineralogist 39 231.Google Scholar
Meier, M. F. and Tangborn, W. V., (1965) Net budget and flow of South Cascade Glacier, Washington Jour. Glac. 5 547.CrossRefGoogle Scholar
Miller, C. D., (1969) Chronology of neoglacial moraines in the Dome Peak Area, North Cascade Range, Washington Arctic Alpine Res. 1 49.CrossRefGoogle Scholar
Rainwater, F. H. and Guy, H. P. (1961) Some observations on the hydrochemistry and sedimentation of the Chamberlin Glacier Area, Alaska: U.S. Geol. Surv. Prof. Paper 414-C, 14 pp.Google Scholar
Reynolds, R. C., (1967) Interstratified clay systems: Calculation of the total one-dimensional diffraction function Am. Mineralogist 52 661.Google Scholar
Reynolds, R. C., (1968) The effect of particle size on apparent lattice spacings Acta Crystallogr. A24 319.CrossRefGoogle Scholar
Reynolds, R. C. and Hower, J., (1970) The nature of interlayering in mixed-layer illite-montmorillonites Clays and Clay Minerals 18 25.CrossRefGoogle Scholar
Slatt, R. M., (1970) Sedimentological and Geochemical Aspects of Sediment and Water from Ten Alaskan Valley Glaciers .Google Scholar
(1924) Sveriges Geol. Undersokn. Arsbok 18 5.Google Scholar
Tangborn, W. V., (1966) Glacier mass budget measurements by hydrologie means Water Resources Res. 2 105.CrossRefGoogle Scholar
Walker, G. F., (1958) Reactions of expanding-lattice minerals with glycerol and ethylene glycol Clay Min. Bull. 3 302.CrossRefGoogle Scholar
Walker, G. F. and Brown, G., (1961) Vermiculite minerals The X-Ray Identification and Crystal Structures of Clay Minerals London Mineralogical Society.Google Scholar
Wollast, R., (1967) Kinetics of the alteration of K-feldspar in buffered solutions at low temperature Geochim. Cosmochim. Acta 31 635.CrossRefGoogle Scholar
Yaalon, D. H., (1962) Mineral composition of the average shale Clay Min. Bull. 5 31.CrossRefGoogle Scholar