Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T20:12:14.782Z Has data issue: false hasContentIssue false

Clay mineral assemblages and vitrinite reflectance in the Laga Basin (Central Apennines, Italy): What do they record?

Published online by Cambridge University Press:  01 January 2024

Luca Aldega*
Affiliation:
Dipartimento di Scienze Geologiche, Università degli Studi ‘Roma Tre’, L.go S. Leonardo Murialdo, 1, 00146 Roma, Italy
Flavia Botti
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Pisa, Via S. Maria, 53 - 50100 Pisa, Italy
Sveva Corrado
Affiliation:
Dipartimento di Scienze Geologiche, Università degli Studi ‘Roma Tre’, L.go S. Leonardo Murialdo, 1, 00146 Roma, Italy
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Temperature-dependent clay mineral assemblages and vitrinite reflectance data have been used to investigate levels of diagenesis from the Messinian Laga Basin in the Central Apennines developed at the footwall of the Sibillini Mts. and the Gran Sasso Massif. Data are from stratigraphic units forming the main siliciclastic basin fill up to Middle Messinian gypsum-arenites and its pre-orogenic substratum. Specifically, the largest Rom% values and percentages of illite layers in illite-smectie (I-S) are found in the basin depocenter and at the footwall of the main carbonate thrust sheets. Smaller Rom% values, and percentage of illite layers in I-S characterize less subsided sectors surrounding the depocenter.

The X-ray diffraction data were treated using decomposition methods and the peaks identified were rationalized in terms of discrete and/or mixed-layer phases. Complex clay mineral assemblages were found in the Laga Fm. including three sub-populations of illitic material corresponding to authigenic and detrital components. I-S mixed layers record the maximum paleotemperature the Laga Fm. experienced, which is directly related to its burial history. Kübler index (KI) data, however, suggest higher temperatures related to detrital K-micas inherited from the uplift of the Alpine-Apennines chain.

A tentative calculation of paleotemperatures from selected data of organic and inorganic parameters is also proposed and compared with recent sedimentological, stratigraphic and structural data. We conclude that the Laga Basin fill never experienced temperatures of >100–110°C, generally due to variable sedimentary loading, whereas localized anomalous heating is due to the effect of the tectonic emplacement and subsequent local erosion of the Sibillini and Gran Sasso thrust sheets.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Allen, P.A. and Allen, R.R., (1993) Basin Analysis Principles and Applications Oxford, UK Blackwell 451 pp.Google Scholar
Arkai, P., Mottana, A. Sassi, F.P. Thompson, J.B. and Guggenheim, S., (2002) Phyllosilicates in very low-grade metamorphism: transformation to micas Micas: Crystal Chemistry and Metamorphic Petrology Washington, D.C. Mineralogical Society of America 463478 10.1515/9781501509070-016.CrossRefGoogle Scholar
Artoni, A., (2003) Messinian events within the tectonostratigraphic evolution of the Southern Laga Basin (Central Apennines, Italy) Bollettino della Società Geologica Italiana 122 447465.Google Scholar
Barker, C., (1996) Thermal Modeling of Petroleum Generation: Theory and Applications Amsterdam Elsevier 512 pp.Google Scholar
Barker, C.E., Naeser, N.D. and McCulloh, T.H., (1989) Temperature and time in thermal maturation of sedimentary organic matter Thermal History of Sedimentary Basins New York Springer-Verlag 7598.Google Scholar
Barker, C.E. and Pawlewicz, M.J. (1994) Calculation of vitrinite reflectance from thermal histories and peak temperatures. A comparison of methods. Pp. 216229 in: Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations (Mukhopadhyay, P.K. and Dow, W.G., editors). ACS Symposium Series, 570, American Chemical Society.CrossRefGoogle Scholar
Bigi, S. and Casero, P., (2006) Deep geometry of Laga basin (Central Apennines, Italy) Geophysical Research Abstracts 8 06071.Google Scholar
Bigi, S. Casero, P. Corrado, S. Milli, S. Moscatelli, M. and Stanzione, O., (2006) Geometric framework and thermal history of the Laga basin: constraints for integrated basin analysis Geophysical Research Abstracts 8 08484.Google Scholar
Borrego, A.G. Araujo, C.V. Balke, A. Cardott, B. Cook, A.C. David, P. Flores, D. Hámor-Vidó, M. Hiltmann, W. Kalkreuth, W. Koch, J. Kommeren, C.J. Kusc, J. Ligouis, B. Marques, M. Mendonça Filho, J.G. Misz, M. Oliveira, L. Pickel, W. Reimer, K. Ranasinghe, P. Suárez-Ruiz, I. and Vieth, A., (2006) Influence of particle and surface quality on the vitrinite reflectance of dispersed organic matter: comparative exercise using data from the qualifying system for reflectance analysis working group of ICCP International Journal of Coal Geology 68 151170 10.1016/j.coal.2006.02.002.CrossRefGoogle Scholar
Bucher, K. and Frey, M., (1994) Petrogenesis of Metamorphic Rocks Berlin Springer-Verlag 10.1007/978-3-662-03000-4 318 pp.CrossRefGoogle Scholar
Calamita, F. Cello, G. Deiana, G. and Paltrinieri, W., (1994) Structural styles, chronology rates of deformation, and time-space relationships in the Umbria-Marche thrust system (central Apennines, Italy) Tectonics 13 873881 10.1029/94TC00276.CrossRefGoogle Scholar
Carosi, R. Leoni, L. Montomoli, C. and Sartori, F., (2003) Very low-grade metamorphism in the Tuscan Nappe, Northern Apennines, Italy: relationships between deformation and metamorphic indicators in the La Spezia mega-fold Schweizerische Mineralogische und Petrographische Mitteilungen 83 1532.Google Scholar
Centamore, E. Cantalamessa, G. Micarelli, A. Potetti, M. Berti, D. Bigi, S. Morelli, C. and Ridolfi, M., (1991) Stratigrafia e analisi di facies dei depositi del Miocene e del Pliocene inferiore dell’avanfossa marchigiano-abruzzese e delle zone limitrofe Studi Geologici Camerti 1991/2 125131.Google Scholar
Corda, L. and Morelli, C., (1996) Compositional evolution of the Laga and Cellino sandstones (Messinian-Lower Pliocene, Adriatic foredeep) Bollettino della Società Geologica Italiana 115 423437.Google Scholar
D’Agostino, N. and Corrado, S., (1999) Differential erosion along a mountain front: geomorphological and organic matter thermal analyses in the Gran Sasso Range (Central Italy) International workshop on: ‘Large scale vertical movements and related gravitational processes’ Rome Camerino 51.Google Scholar
D’Agostino, N. Chamot-Rooke, N. Funiciello, R. Jolivet, L. and Speranza, F., (1998) The role of pre-existing thrust faults and topography on the styles of extension in the Gran Sasso range (central Italy) Tectonophysics 292 229254 10.1016/S0040-1951(98)00070-5.CrossRefGoogle Scholar
Essene, E.J. and Peacor, D.R., (1995) Clay mineral thermometry — acritical perspective Clays and Clay Minerals 43 540553 10.1346/CCMN.1995.0430504.CrossRefGoogle Scholar
Gharrabi, M. Velde, B. and Sagon, J.-P., (1998) The transformation of illite to muscovite in pelitic rocks: constraints from X-ray diffraction Clays and Clay Minerals 46 7988 10.1346/CCMN.1998.0460109.CrossRefGoogle Scholar
Ghisetti, F. and Vezzani, L., (1986) Assetto geometrico ed evoluzione strutturale della catena del Gran Sasso tra Vado di Siellae Vado di Corno Bollettino della Società Geologica Italiana 105 131171.Google Scholar
Heling, D. and Teichmüller, M., (1974) Die Grenze Montmorillonite/Mixed Layer-Minerale und ihre Beziehung zur Inkohlung in der Grauen Schichtenfolge des Oligozäns im Oberrheingraben Fortschritte in der Geologie von Rheinland und Westfalen 24 113128.Google Scholar
Hillier, S., (1993) Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland Clays and Clay Minerals 41 240259 10.1346/CCMN.1993.0410211.CrossRefGoogle Scholar
Hoffman, J. Hower, J., Scholle, P.A. and Schluger, P.R., (1979) Clay mineral assemblages as low grade metamorphic geothermometers: applications to the thrust faulted disturbed belt of Montana, USA Aspect of Diagenesis Tulsa, Oklahoma The Society of Economic Paleontologists and Mineralogists 5579 10.2110/pec.79.26.0055.CrossRefGoogle Scholar
Hower, J. Eslinger, E.V. Hower, M.E. and Perry, E.A., (1976) Mechanism of burial metamorphism of argillaceous sediment — mineralogical and chemical evidence Geological Society of America Bulletin 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Kisch, H.J., (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples Journal of Metamorphic Geology 9 665670 10.1111/j.1525-1314.1991.tb00556.x.CrossRefGoogle Scholar
Kisch, H.J. Árkai, P. and Brime, C., (2004) On the calibration of the illite Kübler index (illite ‘crystallinity’) Schweizerische Mineralogische und Petrographische Mitteilungen 84 323331.Google Scholar
Lanson, B., (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals Clays and Clay Minerals 45 132146 10.1346/CCMN.1997.0450202.CrossRefGoogle Scholar
Leoni, L., (2001) New standardized illite crystallinity data from low — to very-low grade metamorphic rocks (Northern Apennines, Italy) European Journal of Mineralogy 13 11091118 10.1127/0935-1221/2001/0013-1109.CrossRefGoogle Scholar
Leoni, L. Marroni, M. Sartori, F. and Tamponi, M., (1996) Metamorphic grade in metapelites of the Internal Liguride Units (Northern Apennines, Italy) European Journal of Mineralogy 8 3550 10.1127/ejm/8/1/0035.CrossRefGoogle Scholar
Manzi, V. Lugli, S. Ricci Lucchi, F. and Roveri, M., (2005) Deep-water clastic evaporites deposition in the Messinian Adriatic foredeep (northern Apennines, Italy): did the Mediterranean ever dry out? Sedimentology 52 875902 10.1111/j.1365-3091.2005.00722.x.CrossRefGoogle Scholar
Merriman, R.J. Frey, M., Frey, M. and Robinson, D., (1999) Patterns of very low-grade metamorphism in metapelitic rocks Low-grade Metamorphism Oxford, UK Blackwell 61107.Google Scholar
Merriman, R.J. and Kemp, S.J., (1996) Clay minerals and sedimentary basin maturity Mineralogical Society Bulletin 111 78.Google Scholar
Milli, S. Moscatelli, M. Stanzione, O. Gennari, G. and Marini, M., (2004) Sedimentology and physical stratigraphy of the pre-gypsum arenites deposits of the Laga formation 32nd International Geological Congress Italy Firenze.Google Scholar
Milli, S. Moscatelli, M. Stanzione, O. Falcini, F. and Bigi, S., (2006) The Messinian Laga Formation:facies, geometries, stratigraphic architecture and structural style of a confined turbidite basin (Central Appennines, Italy). Excursion Guidebook Rome Universita degli Studi ‘La Sapienza’ 55 pp.Google Scholar
Moore, D.M. Reynolds, R.C. Jr., (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press.Google Scholar
Moscatelli, M., Milli, S., Stanzione, O., Marini, M., Gennari, G. and Vallone, R. (2004) I depositi torbiditici del Messiniano inferiore dell’Appennino Centrale: bacino del Salto-Tagliacozzo e della Laga (Lazio, Abruzzo, Marche). 2ndGeoSed Meeting, Post-congress Field Trip Guidebook, 65, Rome.Google Scholar
Parotto, M. Praturlon, A., Ogniben, L. Parotto, M. and Praturlon, A., (1975) Geological summary of the Central Apennines Structural Model of Italy Rome C.N.R 257311.Google Scholar
Pollastro, R.M., (1993) Consideration and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississipian age Clays and Clay Minerals 41 119133 10.1346/CCMN.1993.0410202.CrossRefGoogle Scholar
Pollastro, R. Barker, C.E. and Gautier, D.L., (1986) Application of clay mineral, vitrinite reflectance, and fluid inclusion studies to the thermal and burial history of the Pinedale Anticline, Green River Basin, Wyoming Roles of Organic Matter in Sediment Diagenesis Tulsa, Oklahoma The Society of Economic Paleontologists and Mineralogists 7383 10.2110/pec.86.38.0073.CrossRefGoogle Scholar
Price, L.C., (1983) Geologic time as a parameter in organic metamorphism and vitrinite reflectance as an absolute paleogeothermometer Journal of Petroleum Geology 6 538 10.1111/j.1747-5457.1983.tb00260.x.CrossRefGoogle Scholar
Price, L.C. and Barker, C.E., (1985) Suppression of vitrinite reflectance in amorphous rich kerogen — a major unrecognized problem Journal of Petroleum Geology 8 5984 10.1111/j.1747-5457.1985.tb00191.x.CrossRefGoogle Scholar
Ronchi, P. Casaglia, F. and Ceriani, A., (2003) The multiphase dolomitization of the Liassic Calcare Massiccio e Corniola successions (Montagna dei Fiori, Northern Apennines, Italy) Bollettino della Società Geologica Italiana 122 157172.Google Scholar
Rusciadelli, G. Viandante, M.G. Calamita, F. and Cook, A.C., (2005) Burial-exhumation history of the central Apennines (Italy), from the foreland to the chain building: thermochronological and geological data Terra Nova 17 560572 10.1111/j.1365-3121.2005.00649.x.CrossRefGoogle Scholar
Scisciani, V. and Montefalcone, R., (2005) Evoluzione neogenico-quaternaria del fronte della catena centro-appenninica: vincoli dal bilanciamento sequenziale di una sezione geologicaregionale Bollettino della Società Geologica Italiana 124 579599.Google Scholar
Środoń, J., (1999) Nature of mixed-layer clays and mechanisms of their formation and alteration Annual Review of Earth and Planetary Sciences 27 1953 10.1146/annurev.earth.27.1.19.CrossRefGoogle Scholar
Stach, E. Mackowsky, M-Th Teichmüller, M. Taylor, G.H. Chandra, D. and Teichmüller, R., (1982) Stach’s Textbook of Coal Petrology Berlin Gebruder Borntraeger 535 pp.Google Scholar
Teichmüller, M. and Frey, M., (1987) Organic material and very low-grade metamorphism Low Temperature Metamorphism Glasgow and London Blackie 114161.Google Scholar
Valloni, R. Cipriani, N. and Morelli, C., (2002) Petrostratigraphic record of the Apennine foredeep basins, Italy Bollettino della Società Geologica Italiana 1 455465.Google Scholar
Wang, H. Stern, W.B. and Frey, M., (1995) Deconvolution of the X-ray ‘Illite’ 10-Å complex: acase study of the Helvetic sediments from eastern Switzerland Schweizerische Mineralogische und Petrographische Mitteilungen 75 187199.Google Scholar
Wang, H. Frey, M. and Stern, W.B., (1996) Diagenesis and metamorphism of clay minerals in the Helvetic Alps of Eastern Switzerland Clays and Clay Minerals 44 96112 10.1346/CCMN.1996.0440109.CrossRefGoogle Scholar
Warr, L.N. and Rice, A.H.N., (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data Journal of Metamorphic Geology 12 141152 10.1111/j.1525-1314.1994.tb00010.x.CrossRefGoogle Scholar
Weaver, C.E. Broekstra, B.R. and Weaver, C.E., (1984) Illite-mica Shale-slate Metamorphism in the Southern Appalachians New York Elsevier 6797 10.1016/B978-0-444-42264-4.50009-8.CrossRefGoogle Scholar
Zattin, M. Picotti, V. and Zuffa, G.G., (2002) Fission-track reconstruction of the front of the Northern Apennine thrust wedge and overlying Ligurian Unit American Journal of Science 302 346379 10.2475/ajs.302.4.346.CrossRefGoogle Scholar