Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T15:21:50.841Z Has data issue: false hasContentIssue false

Clay Diagenesis in the Sandstone Reservoir of the Ellon Field (Alwyn, North Sea)

Published online by Cambridge University Press:  28 February 2024

Lhoussain Hassouta
Affiliation:
Université Lille 1, URA 719, Laboratoire de Sédimentologie et Géodynamique, 59655 Villeneuve d'Ascq, France
Martine D. Buatier
Affiliation:
Université Lille 1, URA 719, Laboratoire de Sédimentologie et Géodynamique, 59655 Villeneuve d'Ascq, France
Jean-Luc Potdevin
Affiliation:
Université Lille 1, URA 719, Laboratoire de Sédimentologie et Géodynamique, 59655 Villeneuve d'Ascq, France
Nicole Liewig
Affiliation:
Centre de Géochimie de la Surface, CNRS, 1, rue Blessig, 67084 Strasbourg Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The nature, composition, and relative abundance of clay minerals in the sandstones of the Brent Group reservoir were studied between 3200–3300 m in a well of the Ellon Field (Alwyn area, North Sea). The sandstones have a heterogeneous calcite cement which occurred during early-diagenesis. Clay diagenesis of the cemented and uncemented sandstones was investigated using optical microscopy, scanning electron microscopy (SEM), X-ray diffraction analyses (XRD), and infrared spectroscopy (IR). The influence of cementation on clay neoformation is demonstrated in this study. Detrital illite and authigenic kaolinite are present in both the calcite-cemented and uncemented sandstones suggesting that kaolinite precipitated before calcite cementation. In the uncemented sandstones, blocky dickite replaces vermiform kaolinite with increasing depth. At 3205 m, authigenic illite begins to replace kaolinite and shows progressive morphological changes (fibrous to lath-shape transition). At 3260 m, all sandstones are not cemented by calcite. Illite is the only clay mineral and shows a platelet morphology.

In the cemented samples, vermiform kaolinite is preserved at all depths, suggesting that dickite transformation was inhibited by the presence of the calcite cement. This observation suggests that calcite cement would prevent fluid circulation and dissolution-precipitation reactions.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Beaufort, D. Cassagnabere, A. Petit, S. Lanson, B. Berger, G. Lacharpagne, J.C. and Johansen, H., 1998 Kaolinite-to-dickite reaction in sandstone reservoirs Clay Minerals 33 297316 10.1180/000985598545499.CrossRefGoogle Scholar
Bjørkum, P.A. Walderhaug, O. and Aase, N.E., 1993 A model for the effect of illitization on porosity and quartz cementation of sandstones Journal of Sedimentary Petrology 63 10891091 10.2110/jsr.63.1089.CrossRefGoogle Scholar
Bjørlykke, K., Parker, A. and Sellwood, B.W., 1983 Diagenetic reaction in sandstones Sediment Diagenesis, NATO .CrossRefGoogle Scholar
Bjørlykke, K. and Aagaard, P., 1992 Clay Minerals in North Sea Sandstones Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones 47 6580 10.2110/pec.92.47.0065.CrossRefGoogle Scholar
Bjørlykke, K. Nedkvite, T. Ramm, M. and Saigal, G.C., 1992 Diagenetic processes in Brent Group (Middle Jurassic) reservoirs of the North Sea: An overview Geology of the Brent Group 61 263287.Google Scholar
Blanche, J.B. and Whitaker, JH D, 1978 Diagenesis of part of the Brent Sand Formation (Middle Jurassic) of the northern North Sea Basin Journal of the Geological Society (London) 135 7382 10.1144/gsjgs.135.1.0073.CrossRefGoogle Scholar
Bowen, J.M. and Woodland, A.W., 1975 The Brent Oil Field Petroleum and the Continental Shelf of Northwest Europe .Google Scholar
Buatier, M.D. Travé, A. Labaume, P. and Potdevin, J.L., 1997 Dickite related to fluid-sediment interaction and deformation in pyrenean thrust-fault zones European Journal of Mineralogy 9 875888 10.1127/ejm/9/4/0875.CrossRefGoogle Scholar
Deegan, C.E. and Scull, B.J., 1977 A standard lithostrati-graphic nomenclature for the central and northern North Sea .Google Scholar
Ehrenberg, S.N. Aagaard, P. Wilson, M.J. Fraser, A.R. and Duthie, D.M.L., 1993 Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf Clay Minerals 28 325352 10.1180/claymin.1993.028.3.01.CrossRefGoogle Scholar
Faure, J.L., 1990 Failles normales, coupes équilibrées et subsidence dans les bassins en extention .Google Scholar
Giles, M.R. Stevenson, S. Martin, S. Cannon, S.J.C. Hamiliton, P.J. Marshall, J.D. and Samways, G.M., 1992 The reservoir properties and diagenesis of the Brent group: A regional perspective Geology of the Brent Group 61 289327.Google Scholar
Glasmann, J.R., 1992 The fate of feldspar in Brent Group reservoirs, North Sea: A regional synthesis of diagenesis in shallow, intermediate, and deep burial environments Geology of the Brent Group 61 329350.Google Scholar
Glasmann, J.R. Lundegard, P.D. Clark, R.A. Penny, B.K. and Collins, I.D., 1989 Geochemical evidence for the history of diagenesis and fluid migration: Brent sandstone, Heather Field, North Sea Clay Minerals 24 255284 10.1180/claymin.1989.024.2.10.CrossRefGoogle Scholar
Gluyas, J. and Coleman, M., 1992 Material flux and porosity changes during sediment diagenesis Nature 365 5254 10.1038/356052a0.CrossRefGoogle Scholar
Greenwood, P.J. Sha, H.F. and Fallick, A.E., 1994 Petrographic and isotopic evidence for diagenetic processes in middle Jurassic sandstone and mudrocks from the Brea, North Sea Clay Minerals 29 637650 10.1180/claymin.1994.029.4.18.CrossRefGoogle Scholar
Gresen, R.L., 1967 Composition-volume relationships of metamorphism Chemical Geology 2 4755 10.1016/0009-2541(67)90004-6.CrossRefGoogle Scholar
Hancock, N.J. and Taylor, A.M., 1978 Clay mineral diagenesis and oil migration in the Middle Jurassic Brent Sand Formation Journal of the Geological Society (London) 135 6972 10.1144/gsjgs.135.1.0069.CrossRefGoogle Scholar
Haszeldine, R.S. Brint, J.F. Fallick, A.E. Hamilton, P.J. and Brown, S., 1992 Open and restricted hydrologies Geology of the Brent Group 61 401419.Google Scholar
Jourdan, A. Thomas, M. Brevart, O. Robson, P. Sommer, F. Sullivan, M., Brooks, J. and Gllennie, K., 1987 Diagenesis as the control of the Brent sandstone reservoir properties in the Greater Alwyn area (East Shetland basin) Petroleum Geology of North West Europe .Google Scholar
Kantorowicz, J., 1984 The nature, origin and distribution of authigenic clay minerals from Middle Jurassic Ravenscar and Brent Group sandstones Clay Minerals 19 359375 10.1180/claymin.1984.019.3.08.CrossRefGoogle Scholar
Kantorowicz, J.D. Bryant, I.D. and Daans, J.M., 1987 Controls on the geometry and distribution of carbonate cements in Jurassic sandstones: Bridport Sands, southern England and Viking Group, Troll Field, Norway Diagenesis of Sedimentary Sequences 36 102118.Google Scholar
Kossovskaya, A.G. and Shutov, V.D., 1963 Facies of regional epi-and metagenesis International Geology Review 7 11571167 10.1080/00206816509474768.CrossRefGoogle Scholar
Lanson, B. and Beson, G., 1992 Characterization of the end of smectite-to-illite transformation: Decomposition of X-ray patterns Clays and Clay Minerals 40 4052 10.1346/CCMN.1992.0400106.CrossRefGoogle Scholar
Lanson, B. Beaufort, D. Berger, G. Baradat, J. and Lacharpagne, J.C., 1996 Illitization of diagenetic kaolinite-to-dickite conversion series: late-stage diagenesis of the lower Permian Rotliegend sandstone reservoir, Offshore of the Netherlands Journal of Sedimentology Research 66 501518.Google Scholar
Marshall, D.J., 1998 Cathodoluminescence of Geological Materials. .Google Scholar
McAulay, G.E. Burley, S.D. Johnes, L.H. and Parker, J.R., 1993 Silicate mineral authigenesis in the Hutton and NW Horton fields: implications for sub-surface porosity development Petroleum Geology of Northwest Europe .CrossRefGoogle Scholar
McAulay, G.E. Burley, S.D. Fallick, A.E. and Kusznir, N.J., 1994 Palaeohydrodynamic fluid flow regimes during diagenesis of the Brent group in the Hutton-NW Hutton reservoirs, constraints from oxygen isotope studies of authigenic kaolin and reverse flexural modelling Clay Minerals 29 609626 10.1180/claymin.1994.029.4.16.CrossRefGoogle Scholar
Potdevin, J.L., 1993 Gresens 92: A simple Macintosh program of the Gresens method Computers & Geosciences 19 12291238 10.1016/0098-3004(93)90027-3.CrossRefGoogle Scholar
Potdevin, J.L. and Hassouta, L., 1997 Bilan de matière des processus d’illitisation et de surcroissance de quartz dans un réservoir pétrolier du champ d’Ellon (Zone d’Alwyn, Mer du Nord) Bulletin de la Societé Géologique de France 168 219229.Google Scholar
Reynolds, R.C. Jr, 1985 NEWMOD a computer program for the calculation of one dimensional diffraction patterns of mixed-layered clays .Google Scholar
Saigal, G.C. and Bjørlykke, K., 1987 Carbonate cements in clastic reservoir rocks from offshore Norway-relationships between isotopic composition, textural development and burial depth Diagenesis of Sedimentary Sequences 36 313324.Google Scholar
Scotchman, I.C. Johnes, L.H. and Miller, R.S., 1989 Clay diagenesis and oil migration in Brent Group sandstones of NW Hutton Field, UK North Sea Clay Minerals 24 339374 10.1180/claymin.1989.024.2.13.CrossRefGoogle Scholar
Shutov, V.D. Aleksanddrova, A.V. and Losievskaya, S.A., 1970 Genetic interpretation of the polymorphism of the kaolinite group in sedimentary rocks Sedimentology 15 6982 10.1111/j.1365-3091.1970.tb00206.x.CrossRefGoogle Scholar
Sommer, F., 1978 Diagenesis of Jurasic sandstones in the Viking Graben Journal of the Geological Society (London) 135 6367 10.1144/gsjgs.135.1.0063.CrossRefGoogle Scholar
Thomas, M., 1986 Diagenetic sequences and K/Ar dating in sandstones, central Viking Graben: Effects on reservoir properties Clay Minerals 21 375378 10.1180/claymin.1986.021.4.15.CrossRefGoogle Scholar
Walderhaug, O. and Bjørkum, P.A., 1992 Effect of meteroic water flow on calcite cementation in the Middle Jurassic Oseberg Formation, Well 30/3-2, Veslefrikk Field, Norwegian North Sea Marine and Petroleum Geology 9 307318 10.1016/0264-8172(92)90079-T.CrossRefGoogle Scholar
Walderhaug, O. Bjørkum, P.A. Nordgard Bolas, H.M. and Collisson, J.D., 1989 Correlation of calcite cemented layers in shallow marine sandstones of the Fensfjord Formation of the Brage Field Correlation in Hydrocarbon Exploration .CrossRefGoogle Scholar
Zieglar, D.L. and Spotts, J.H., 1978 Reservoir and source bed history in the Great Valley, California American Association of Petroleum Geologists Bulletin 62 813826.Google Scholar
Zimmerle, W. and Rösch, H., 1991 Petrogenetic significance of dickite in European sedimentary rocks Zentralblatt für Geology und Paläontologie Teil II: Paläontologie. Stutt-gurt 8 11751196.Google Scholar